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Abstract—Microservices have become an important design
paradigm for large-scale distributed systems, offering flexible
provisioning options. A fundamental challenge is the exponential
growth of the solution space with the number of user requests,
posing challenges to efficient provisioning and scheduling when
aiming to balance cost and latency under resource constraints
in large-scale dynamic edge environments. To tackle this prob-
lem, we formulate a joint optimization model for microservice
provisioning and routing that integrates cost efficiency and
latency reduction while accounting for uncertainties in the origin
location of requests. To establish a unified framework that
facilitates decision-making, we propose an integer linear pro-
gramming (ILP) model that captures the dependencies between
microservices in the service chain. Our Scalable optimization
framework with Cost-efficiency and Latency reduction (SoCL)
comprises three stages: an initial partitioning guarantees latency
bounds, a pre-provisioning stage considers provisioning cost, and
a multi-scale combination stage balances cost and latency through
parallel and serial local search. Extensive experiments conducted
across diverse scenarios based on a commonly used dataset
demonstrate that the proposed SoCL framework significantly
increases cost efficiency and decreases latency compared to
established baselines, while reducing execution time up to one
order of magnitude compared to obtaining the optimal solution
by optimizer.

Index Terms—cost-efficiency, latency reduction, microservice
provisioning, scalable optimization, serverless edge computing

I. INTRODUCTION

The rapid development of technologies such as the Internet
of Things (IoT) and 5G has led to the emergence of server-
less edge computing, a transformative paradigm that reduces
reliance on centralized cloud services by deploying lightweight
functions to the network edge. Microservices, as a dominant
design paradigm for distributed systems, further amplify these
benefits by decomposing monolithic applications into smaller,
modular, and independently deployable services. Combined
with containerization technologies (e.g., Docker) and orches-
tration tools (e.g., Kubernetes), microservices enable efficient
resource provisioning, management, and scaling. Despite these
advantages, efficiently managing microservices in large-scale
dynamic environments remains a fundamental challenge.
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Fig. 1: An example illustrating challenges from user-side.

From the user’s perspective, as illustrated in Figure 1, the
joint optimization of provisioning and routing faces two key
difficulties arising from user mobility and dynamic demand.
① provisioning-adaption: User mobility causes frequent and
unpredictable shifts in request patterns, leading to dynamic
trigger locations. Although overlapping requests offer opportu-
nities to reduce redundancy, traditional static deployments lack
adaptability, resulting in inefficient resource use. Dynamically
selecting optimal instance locations is thus crucial to balance
cost and latency in edge networks. ② latency-optimized: Once
microservices (e.g.,m1-m5 in Figure 1) are deployed, efficient
routing is critical to minimize latency and maintain user
experience. Due to microservice interdependencies, requests
require coordinated routing, often leading to path conflicts and
network contention. Conventional strategies ignore these de-
pendencies, increasing delay. Therefore, latency-aware routing
that adapts to workload variations while minimizing end-to-
end delay is essential.

Meanwhile, from the operator’s perspective, we identify
several challenges on designing an efficient and robust mi-
croservice provisioning framework through detailed analysis
of Alibaba Cluster traces and optimization complexity.

1) High complexity: Microservice provisioning and rout-
ing are more complex than traditional scheduling due to
factors like network topology, resource constraints, and ser-
vice dependencies. These interrelated variables create a high-
dimensional optimization problem. Moreover, intricate de-
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Fig. 2: Runtime of optimal solutions using Gurobi.

pendencies among user requests require coordinated routing
strategies to minimize latency and resource contention, further
increasing the optimization difficulty. More importantly, the
microservice provisioning and routing problem is NP-hard [3],
and solving it directly as an integer linear programming (ILP)
formulation becomes prohibitively expensive as the runtime
scales exponentially with the number of edge servers and user
requests. As shown in Figure 2, where the y-axis is plotted on
a logarithmic scale, experiments using Gurobi with 10 to 30
edge servers show that runtime increased exponentially—over
tenfold—as the number of users grew from 40 to 60, which
highlights the need for scalable approaches.

2) Dynamic environment: The environment is inherently
dynamic due to the diverse and time-varying access patterns
of service demands from users. We analyzed microservice
traces from the Alibaba Cluster Trace Program [25], [26] by
selecting the 10 most frequently recorded services on a one-
hour trace, to analyze similarity distributions across files. As
shown in Figure 3 (a), the similarity values vary significantly
across files, indicating a highly dynamic and heterogeneous
service landscape. Further analyze each service that contains
over 12 microservices in its dependency chain. As shown in
Figure 3 (b), the maximum similarity of the traces is only 0.65,
indicating diverse trigger points and dependency structures.

3) Unpredictable workload: User-generated requests ex-
hibit high variability and randomness. During peak hours,
intensive user requests can overwhelm the system, while off-
peak periods lead to underutilized resources. To illustrate this,
we collected 10-hour trace data from the Alibaba Cluster Trace
Program and analyzed request volumes across time intervals.
As shown in Figure 4, the request rates exhibit significant
temporal fluctuations and recurring peaks, reflecting the un-
predictable nature of demands. This time-varying workload
complicates resource provisioning and calls for adaptive, load-
aware strategies to maintain performance and cost-efficiency.

4) Limited resource: Edge servers are typically operated
under stringent resource constraints, particularly in memory,
e.g., edge servers from Alibaba have 8GB to 128GB memory
size (Alibaba ENS general instances), which is way more
scarce than the cloud servers. Limited memory capacity on
edge nodes not only causes difficulty in arranging microservice
instances, but also demand a lightweight algorithm to perform
in a memory limited control node.

Motivated by these challenges, our proposed SoCL is
designed for online microservice provisioning and routing.
Rather than assuming stationary request patterns, SoCL pro-
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Fig. 3: Similarity comparison between services and traces.

cesses decisions in a time-slotted manner, where at each time
slot, it adapts to the observed system state and current user
demand. The SoCL aims to address the above challenges
through the following key features: ① One-shot decision-
making: Our approach reacts promptly to mobility-induced
changes, continuously responds to real-time user distributions
and requests. ② Dependency-based filtering: The filtering
mechanism can figure out the intrinsic dependencies inside
the user requests and avoid detoured routing. ③ Optimized for
routing: The partitioning method ensures each connectivity-
based group has at least one instance, increasing the likelihood
of finding a nearby edge server. ④ Flexible storage plan-
ning: The storage planning mechanism performs a deployment
trade-off by instance priority, allowing more warm instances
in the nearby area. This design enables SoCL to handle real-
time fluctuations in service requests without relying on prior
knowledge of future arrivals. The major contributions of this
work include the following:

• We formulate an optimization model for microservices in
serverless edge computing that integrates cost efficiency
and latency reduction while accounting for user location
uncertainty. To enable a systematic solution, we transform
the model by introducing structured decision variables
that capture dependencies among microservices in the
service chain.

• We propose a novel framework, SoCL, consisting of
three modules: initial partition, pre-provisioning, and
multi-scale combination. The partition module clusters
edge servers by electing candidate nodes based on ori-
gin locations, while the pre-provisioning module applies
budget-based bounds to ensure practical feasibility under
resource constraints. To further balance cost and latency,
the multi-scale combination module integrates parallel
and serial local search with a storage-aware planning
mechanism, enabling fast, accurate decision-making and
adaptive resource utilization.

• Extensive experiments were conducted to evaluate
the performance of our SoCL against various bench-
marks using a shared microservice dataset from the
eShopOnContainers project. The results on the sim-
ulation platform and in Kubernetes indicate that the
proposed SoCL significantly increases cost efficiency
and decreases latency compared to established baselines,
while reducing execution time in various scenarios.
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Fig. 4: Temporal distribution of user requests.

The remainder of this paper is organized as follows. Section
II introduces related work. Section III describes the model and
problem formulation. Section IV details the SoCL. Sections V
and VI provide the evaluation and conclusion, respectively.

II. RELATED WORK

In recent years, microservice provisioning based on depen-
dency relationships has garnered significant attention due to
its critical impact on system QoS. Existing studies primarily
focus on two objectives: cost optimization and latency mini-
mization. Some works emphasize the reduction of provisioning
costs [1], [2], [4]–[6]. Deng et al. [1] optimized deployment
costs under resource and performance constraints, while Fu
et al. [2] proposed a runtime system to maintain QoS with
minimal resource use. Yu et al. [4] introduced an auto-scaling
framework for SLA compliance at minimal cost, and Tang et
al. [5] employed Adam and weighted round-robin scheduling
for dynamic optimization. He et al. [6] addressed service
placement using greedy algorithms for fractional polynomial
optimization. Although cost-effective, these methods often do
not adequately account for the impact on latency.

Conversely, latency-aware studies focus on minimizing de-
lays, leading to redundant microservice instances [7]–[11],
[13]–[16]. He et al. [7] tackled deployment as an NP-hard
problem with a two-stage greedy optimization method. Tian et
al. [8] applied distributed reinforcement learning for placement
in IoT environments. Zhao et al. [9] utilized a GA-based strat-
egy for stochastic optimization under uncertain requests. Lv et
al. [10] introduced a graph reinforcement learning framework
to optimize dependencies via deep learning. Peng et al. [11]
proposed a 2-approximation algorithm for joint deployment
and routing. Liu et al. [13] employed neural networks for dy-
namic workload partitioning to reduce latency. Wang et al. [14]
optimized vehicular networks with a placement mechanism to
lower resource consumption. Ray et al. [15] have developed
a method based on reinforcement learning for the placement
and migration of microservices. Jia et al. [16] proposed a
reinforcement learning based method for rearranging cache
contents in CDN services. While these approaches drive cost
or latency optimization, few pursue both objectives jointly.

Many request routing methods overlook the dependencies
of microservices and underestimate their impact on data flow
and latency [17], [18]. Yang et al. [17] have developed a
distributed scheduling framework to optimize task acceptance
under QoS constraints, while Zeng et al. [18] have proposed a
parallel caching and routing algorithm extended to decentral-
ized environments. With respect to microservice dependencies,

probability-based strategies have been explored [1], [6], [7],
[11], [19], [20] that utilize path probabilities for routing deci-
sions. However, these methods often assume full connectivity
of edge servers, which makes them sensitive to the settings
of the probability model and less robust in practice. He and
Deng [1], [6], [7] evaluated routing probabilities by analyzing
node-level function satisfaction, while Chen et al. [19] applied
Lyapunov optimization for service migration and dynamic
routing. In this work, we optimize routing schedules while
calculating latency, addressing both microservice dependen-
cies and dynamic edge network conditions.

III. MODEL AND PROBLEM FORMULATION

A. System Model

Consider a substrate topology of an edge network, modeled
as a weighted undirected graph G(V,L). We use V = {vk}
and L = {lk,k′} to represent the sets of edge servers and
links, respectively. Here, vk denotes the k-th edge server, and
the computing capability of edge server vk is represented as
c(vk), measured in gflop/s. The edge link between servers
vk and vk′ is represented by lk,k′ . Let M = {mi} denote
the set of microservices, which are initially provisioned in
the cloud data center upon user requests. The set of user
requests is represented by U = {uh}, where uh corresponds
to the h-th user request. Each user request is modeled as a
directed chain of microservices, reflecting typical processing
workflows: uh = {Mh, Eh}. Here, Mh = {mi} represents
the set of microservices involved in request uh, and Eh =
{emi→mj} denotes the directed communication links between
them. Specifically, ehmi→mj

captures the dependency between
microservices mi and mj within the processing flow of uh.
The connection between users and edge servers is determined
by the spatial distribution of users. Let Uk represent all user
requests located within the coverage area of edge server vk.

B. Cost Model

We define the deployment cost of a microservice instance
mi as κ(mi). Let x(i, k) be a binary indicator, where x(i, k) =
1 if an instance of microservice mi is deployed on edge server
vk, and x(i, k) = 0 otherwise. The total deployment cost on
edge server vk is then expressed as:

Kk =
∑

mi∈M κ(mi) · x(i, k). (1)

C. Completion Time Model

We use Dh to represent the completion time for the service
request uh, which encompasses both the processing time of the
microservices and the communication time for data transfer
between them. Dh is formally defined as:

Dh = dhin+
∑

mi∈Mh

dhc (mi)+
∑

emi→mj
∈Eh

dhl (emi→mj
)+dhout. (2)

Here, dhin denotes the latency experienced by a user in up-
loading a service request to the initial edge server vs hosting
the first microservice in the service chain requested by uh.
This metric captures the delay incurred in transmitting the



request from the user device to the designated edge server,
which is given by dhin = 1[vk ̸=vs] ·

∑
li,j∈π(vk,vs)

rhin/b(li,j).
We assume that uh is associated with the edge server vk,
where uh ∈ Uk, and use an indicator function to ensure
that the transmission time is only calculated if the associated
edge server vk of uh is different from vs, the edge server
hosting the first microservice of the requested service chain.
Specifically, the indicator function is defined as 1[vk ̸=vs] = 1
when vk ̸= vs, and 1[vk ̸=vs] = 0 otherwise. The data size
requested by user uh is represented by rhin, and b(li,j) denotes
the transmission rate of link li,j along the path from vs to vk,
which is expressed as b(li,j) = B(li,j) · log2 (1 + γ · gi,j/N)
[20]–[22]. Here, B(li,j) is the bandwidth value of the com-
munication link and γ is the transmission power of the edge
server vi. gi,j is the channel gain between the edge servers
equipped with mi and mj and N is the noise power. The
processing time dhc (mi) for microservice quantifies the time
required to execute mi on edge server vk and is defined as
dhc (mi) = q(mi)/c(vk). Here, q(mi) represents the computing
requirements of mi, while c(vk) denotes the computational
capacity of vk, capturing the relationship between workload
and server performance. We use f : vk → R to denote
the physical edge server on which the user uh is located,
where f(uh) = k. Additionally, dhl (emi→mj

) captures the
communication delay between dependent microservices mi

and mj , where dhl (emi→mj
) =

∑
li,j∈π(va,vb)

rhmi→mj
/b(li,j).

Let va ← loch(mi) represent that va is the edge server
chosen by user uh to process mi. Similarly, vb ← loch(mj)
represents the edge server responsible for the microservice mj .
To facilitate communication between two non-adjacent edge
servers (i.e., servers that are not directly connected), we define
a routing path π(va, vb) from va to vb. Furthermore, we use
dhout to represent the time taken to return the results to the user,
where dhout = 1[vd ̸=vs] ·

∑
li,j∈π∗(vd,vs)

rhout/b(li,j), which
selects the shortest return path π∗(vd, vs) for the transmission
according to the minimum number of hops.

D. Problem Formulation

In this paper, we adopt the perspective of the service
provider and aim to optimize the total costs of ownership
while minimizing user response time over a long-term average
period. By achieving this, we aim to improve the overall
quality of service offered to users.

Definition 1 (objective function): The problem is formulated
as minimizing the weighted total cost of services (Kk) and
completion time (Dh),

min λ
∑

vk∈V Kk + (1− λ)
∑

uh∈U Dh. (3)

To meet the QoS and the environment capacity, the objective
is subject to several constraints, which are shown as follows:

Definition 2 (constraints): The QoS maintenance con-
straints (4)-(5) ensure that the completion time and the pro-
visioning costs do not exceed the maximum tolerance limits.
The capacity constraint (6) restricts the edge storage and the

binarity of the provisioning decision, which is strictly defined
and cannot be violated.

Dh ≤ Dmax
h ,∀uh ∈ U (4)∑

vk∈V Kk ≤ Kmax,∀mi ∈M (5)∑
mi∈M x(i, k) · ϕ(mi) ≤ Φ(vk), x ∈ {0, 1},∀i,∀k (6)

These constraints collectively ensure the feasibility and effi-
ciency of the proposed optimization framework.

To better address the optimization problem, we reformulate
the original model by introducing structured decision variables
that normalize relationships among user service requests.

Definition 3 (decision variable): The deployment decision
variable x(i, k)∈{0, 1} indicates whether microservice mi is
deployed on edge server vk, and the service decision variable
y(h, i, k)∈{0, 1} denotes whether mi serves request uh on vk.
Here, we regard dh(mi) as a transmission-computation cycle
within a completion time of a particular user request, formu-
lated as dh(mi) = dhc (mi) + dhl (ep→mi) where p indicates
the preceding microservice. Each completion time consists of
several cycles, depending on the number of microservices in
the request dependency chain. Thus, the equation (2) can be
reformulated as:

Dh =
∑

mi∈Mh

∑
vk∈Vi

y(h, i, k)(dh(mi) + dhout). (7)

By integrating the decision variables, we further derive the
reformulation as follows:

Definition 4 (reformulation): The objective is reformulated
as Equation (8), and the constraints are modified accordingly
to accommodate the reformulation. Equation (9) enforces that
only one microservice instance can be assigned to a particular
user request at any given time. Equation (10) ensures the
existence of an assigned instance, while Equation (11) restricts
the binary of both deployment and assignment decisions.

min λ
∑

vk∈V

∑
mi∈M κ(mi) · x(i, k) (8)

+(1−λ)
∑

uh∈U

∑
mi∈Mh

∑
vk∈Vi

y(h, i, k)(dh(mi)+d
h
out).

s.t.(4)− (6)∑
k∈Vi

y(h, i, k) = 1, ∀uh ∈ U,∀mi ∈Mh (9)

y(h, i, k) ≤ x(i, k), ∀uh ∈ U,∀i,∀k (10)
x(i, k)∈{0, 1}, y(h, i, k) ∈ {0, 1},∀i,∀k. (11)

Following the above transformation, the original mixed-
integer programming problem is reformulated as an integer lin-
ear program (ILP). However, as shown in Figure 2, solving it
with an optimizer becomes computationally infeasible at scale
due to the exponential increase in variables and constraints. To
tackle this, we propose a decoupling approach and introduce
a two-stage algorithm that partitions the original problem into
two interconnected sub-problems: microservice provisioning
and routing. By leveraging iterative interactions and solution
exchanges between these sub-problems, the proposed approach
progressively achieves joint optimization of the overall ob-
jective, resulting in effective microservice provisioning and
routing solutions. Our approach partitions the large-scale edge
network into regions based on a communication threshold,
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Fig. 5: The overview of the SoCL framework.
capturing both user locations and key hub nodes. A distributed
and rapid deployment process is employed to achieve a
coarse-grained allocation of microservices across these re-
gions. Building on this initial allocation, a gradient-based
merging strategy with backtracking is introduced to balance
the trade-off between cost and latency, refining the placement
and improving overall system performance.

IV. ALGORITHM DESIGN

This section presents the three key steps of the microservice
provisioning and routing process, forming the foundation of
the SoCL framework, as depicted in Figure 5.

A. Region-Based Initial Partition

For large-scale user requests in microservice provisioning,
directly searching for deployment and routing strategies across
multiple edge servers results in an exponentially large search
space and high computational complexity. To address this, we
propose a region-based initial partitioning module that reduces
the problem complexity while preserving flexibility for further
optimization. This method constructs and reorganizes a virtual
graph based on candidate nodes and incorporates user request
locations and strategically important nodes. Coarse-grained
microservice allocation is achieved by applying a threshold
ξ to filter links with sufficient communication strength. Algo-
rithm 1 provides step-by-step details and Figure 6 shows an
example with m1.

For each microservice mi ∈ M , we identify all edge
servers vk hosting requests for mi and collect these nodes
in V (mi). The subgraph of G for mi is represented as
G(mi) = {V (mi), L(mi)}, where L(mi) denotes the phys-
ical communication links. In practical scenarios, the spatial
distribution of edge network nodes often results in indirect
connectivity between certain nodes. To effectively model their
relationships, virtual communication links are constructed us-
ing shortest-path routing, enabling accurate representation of
data transmission. Let l′k,q denote the virtual link between
edge nodes vk and vq , and let B(l′k,q) represent its channel
speed, calculated as the harmonic mean of the bandwidths of
all direct links within the shortest path π∗(vk, vq). Specifically,
B(l′k,q) = 1/

∑
li,j∈π∗(vk,vq)

1
b(li,j)

, using these virtual links,
the edge nodes in V (mi) are reconnected to form a virtual

Algorithm 1 Region-Based Initial Partitioning

Input: G, U , M ;
Output: initial partition P;

1: for each mi ∈M do
2: for each vk ∈ V do
3: Construct the node set V (mi) of G(mi);
4: Reconnect G′(mi) based on virtual links;
5: for each l′k,q ∈ L′(mi) do
6: Add l′k,q to G′(mi) with B(l′k,q) > ξ;

7: Generate the initial partitions P(mi) by G(mi);
8: for each partition ps(mi) ∈ P(mi) do
9: for each vk ∈ V \ V (mi) do

10: Choose vk with H(vk) > 2;
11: for each va ∈ ps(mi) do
12: Reorder ps(mi) by argmin{χva

};
13: Check ∆k with va ∈ ps(mi);
14: Add vk to set ps(mi) verified ∆k < 0;
15: Return initial partition P;

graph G′(mi) with an updated set of links L′(mi). Based
on G′(mi), a fast partitioning procedure is applied to group
edge nodes into clusters using a threshold ξ. Virtual links with
B(l′k,q) > ξ are retained, ensuring sufficient communication
strength while filtering out weaker connections to balance
computational efficiency and connectivity. Subsequently, ini-
tial partitions are generated for G(mi), represented as P =
{P(mi)|mi∈M}. Edge nodes in V (mi) connected by L(mi)
form node partitions P(mi) = {ps(mi)}, where s denotes the
group number of each partition.

All further steps extend V (mi) to include nodes that, while
not directly hosting user requests for mi, provisioning mi

on them will benefit nearby users, minimizing the impact
on completion time and reducing the spatial cost associated
with mi. These nodes are referred to as candidate nodes. To
determine whether a node qualifies as a candidate node, a
critical parameter is given as follows:

Definition 5 (proactive factor): Let ∆η denote the proactive
factor of the edge server vη , i.e. the expected deviation in the
completion time of user requests resulting from the provision
of the microservice mi on vη relative to va ∈ ps(mi), which
is calculated by the following equation:

∆η = [
∑

vi∈ps(mi)

ri/B(l′i,η)]|mi→vη−[
∑

vi∈ps(mi)\{va}

ri/B(l′i,a)]|mi→va . (12)

Here, ri represents the total number of user requests for mi

on edge server vi within the set ps(mi). The channel speeds
B(l′i,η) and B(l′i,a) are computed based on the shortest path
between the respective edge nodes. If the instance of mi

is provisioned on vη , i.e., mi → vη , users on edge nodes
in ps(mi) must access vη remotely, as mi is not locally
provisioned, resulting in an overall delay determined by the
first term. Conversely, if mi is placed on an edge node already
hosting user requests, such as va ∈ ps(mi), i.e., mi → va,
the delay for users on va is eliminated since their requests
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Fig. 6: Illustration of the region-based initial partitioning.

are served locally. In this case, only the delays for requests
originating from other edge nodes are considered, as captured
by the second term. Based on this analysis, we formally define
the concept of a candidate node.

Definition 6 (candidate node): A candidate node v(mi)
η for

microservice mi is a node that does not directly host user
requests but enhances communication efficiency by reducing
completion time, satisfying ∆η < 0.

The filtering process begins to identify candidate nodes in
lines 8-12 of Algorithm 1, which are subsequently assigned to
their respective partitions ps(mi). Line 9 selects nodes from
the set V (mi) that satisfy H(v(mi)

η ) > 2, as established in
Theorem 1, indicating their suitability as candidate nodes. The
detailed proof is included in the appendix A for brevity. Line
13 further confirms a node as a candidate if it satisfies ∆η < 0,
demonstrating its potential to improve the objective function.
To increase the efficiency of the validation, the communication
intensity χvk is precalculated for each node to quantify the
efficiency of communication between vk and all other nodes,
which is calculated as follows: χvk =

∑
vq∈V \{vk} B(l

′
i,j), and

the node vq can be any other node except vk. The checking
process of ∆η is carried out in ascending order of χvk

,
prioritizing nodes with lower communication intensity, as they
are more likely to satisfy the condition ∆η < 0. Once a node
va ∈ ps(mi) meets this condition, it is promptly identified as a
candidate and added to the set, after which further calculations
are terminated to enhance computational efficiency.

Theorem 1: A candidate node v
(mi)
η must satisfy

H(v(mi)
η ) > 2, where H(v(mi)

η ) denotes the number of direct
connections that provide sufficient connectivity for v(mi)

η to
effectively serve as a candidate for microservice mi.
B. Instance Pre-provisioning

The pre-provisioning module works before the combination
and uses budget-based constraints to optimize the provisioning
process. During this stage, an upper bound on the number
of instances for each microservice is determined based on
the maximum budget to ensure that resource constraints are
guaranteed. Based on the region-based initial partitioning,
this module evaluates the contribution of the microservices
within each cluster and pre-positions the instances accordingly,
narrowing the solution space and providing a basis for efficient
provisioning of instances in the subsequent optimization phase.

1) budget-based bound: To determine the bound for each
microservice, we first consider the total cost constraint Kmax

Algorithm 2 Instance Pre-provisioning

Input: initial partition P;
Output: pre-provisioning Pt;

1: for each vk ∈ V do
2: for each mi ∈M do
3: Calculate

∣∣Umi
vk

∣∣;
4: for each P(mi) ∈ P do
5: for each ps(mi) ∈ P(mi) do
6: Update

∣∣Ups(mi)

∣∣;
7: Calculate εs(mi);
8: if εs(mi) · N (mi) ≥ |ps(mi)| then
9: Pre-provision pts(mi)← mi;

10: else
11: for each vk ∈ ps(mi) do
12: Update Dps(mi)(vk);

13: while |pts(mi)| < εs(mi) · N (mi) do
14: Pre-provision with argmin{Dps(mi)(vk)};
15: Return pre-provisioning Pt;

and the individual deployment cost κ(mi) of each microser-
vice. We use Ku(mi) to represent the maximum limited
remaining budget for mi, which is given by Ku(mi) =
Kmax−

∑
mj∈M\{mi} κ(mj). Based on that, we use N u(mi)

to denote the maximum tolerant number of instances of mi,
which is determined by the integer part, where N u(mi) =
⌊(Kmax−Kι(mi))/κ(mi)⌋. Since the deployment of microser-
vices depends on the location of user requests, the quantity of
each microservice based onN (mi) will not exceed the number
of nodes |V (mi)| on which the user requests are located. Then
the bound for mi can be N (mi) = min{|V (mi)|,N u(mi)}.

2) instance pre-provisioning: Given the predetermined
bound, we assign the estimated number of instances to each
partition by systematically evaluating the spatial distribution of
edge nodes and the origin of user requests. We integrate node
locations and user demand patterns to ensure that instance
allocation within each partition is both balanced and meets the
practical requirements of microservice delivery. The detailed
steps are shown in Algorithm 2. The initial partition P serves
as input, while the resulting pre-provisioning Pt for instances
is generated as output, where Pt = {Pt(mi)|mi∈M}. For each
edge node, we first analyze the patterns of user requests and
the distribution of demand for each microservice connected
to it in lines 1-3. We use Umi

vk
= {uh ∈ Uk|mi∈Eh

} to
denote the set of users connected to edge node vk and have
requested microservice mi. The cardinality

∣∣Umi
vk

∣∣ represents
the total number of these users. Each user uh ∈ Uk contributes
to |Umi

vk
| by requesting mi as part of its service dependency

chain. We then analyze the distribution of user requests and
the characteristics of the demand within each partition. For
a given partition ps(mi), the total number of user requests
is represented by the intermediate variable Ups(mi), defined
as |Ups(mi)| =

∑
vk∈ps(mi)

|Umi
vk
|, which captures the total

demand for mi across all edge nodes in the partition. On
this basis, we introduce a quota allocation strategy for each



Algorithm 3 Multi-scale Combination

Input: initial partition P , pre-provisioning Pt;
Output: provisioning X ;

1: while
∑|V |

k=1Kk ≥ Kmax do ▷ parallel: large-scale
2: Update ζ = {ζi,k} in Algorithm 4;
3: Update Ω = {Ωi,k} with ω;
4: Filter Ω by service dependency Eh;
5: Parallel combine Ωi,k ∈ Ω from Pt;
6: while δ > 0 do ▷ serial: small-scale
7: Calculate Q′ of Pt;
8: Choose Ωi,k ← argminζi,k Pt;
9: Calculate Q′′ of Pt \ {vk} and update δ;

10: Serial combine Ωi,k from Pt;
11: Storage planning with Algorithm 5;
12: Constraint checking on latency with Equation (4);
13: if Dh > Dmax

h then
14: Roll-back: add vk back to Pt;
15: Continue the while loop;
16: Return provisioning X ;

Algorithm 4 UPDATE INSTANCE SET Function

Input: pre-provisioning Pt;
Output: latency loss list ζ;

1: for each mi ∈M do
2: if

∑
pt
s(mi)∈Pt(mi)

|pts(mi)| = 1 then
3: Continue for: M ←M/{mi};
4: for each vk ∈ Pt(mi) do
5: Calculate ζi,k;
6: Update Ωi,k ← {mi| argmin ζi,k};
7: Return latency loss list ζ;

partition based on the ratio of group demand, εs(mi) =∣∣Ups(mi)

∣∣ /∑ps(mi)∈P(mi)

∣∣Ups(mi)

∣∣, ensuring an allocation
that reflects the dynamics of user requests and supports
efficient network operation in line 7. If the allocated quota
is sufficient, i.e., εs(mi) · N (mi) ≥ |ps(mi)|, instances are
directly pre-provisioned across all nodes within the partition in
line 9. Conversely, if the quota is insufficient to meet the node
count, a selection process is employed to determine specific
placement locations within the partition in lines 10-14. This
selection process is guided by an instance contribution-based
approach, designed to prioritize decisions that minimize the
overall completion time for the group.

Definition 7 (instance contribution): The instance contribu-
tion Dps(mi)(vk) represents the estimated overall completion
time for the group ps(mi) if vk is the only node hosting an
instance of mi, which is defined as:

Dps(mi)(vk) =
∑

f(uh)∈ps(mi)\{vk}

ri/B(l′f(uh),k
) + q(mi)/c(vk). (13)

Here, f(uh) denotes other nodes within ps(mi) that have
users requesting mi. B(l′f(uh),k

) represents the communication
rate between the nodes, while q(mi)/c(vk) corresponds to
the computational delay of mi at vk. The contribution of

Algorithm 5 Storage Planning

Input: pre-provisioning Pt;
Output: intermediate provisioning X ′;

1: if
∑

vk∈V Φ(vk) ≥
∑

mi∈M |Pt(mi)| · ϕ(mi) then
2: for each mi ∈M do ▷ FuzzyAHP progress
3: Record κ(mi), ϕ(mi);
4: for each vk ∈ V (mi) do
5: for each uh ∈ Uk do
6: Calculate and record

∣∣Umi
vk

∣∣ ,Rmi
vk

;

7: Calculate local demand factor ρ;
8: for each vk ∈ V do
9: while

∑
mi∈M x(i, k) · ϕ(mi) > Φ(vk) do

10: Choose mj with argmin ρk;
11: Reorder vq ∈ V \ {vk} by argmax b(lk,q)
12: if x(j, q) = 0 and ϕ(mj) ≤ Φ(vk) then
13: Let x(j, k) = 0 and x(j, q) = 1;
14: Continue the while loop;
15: Record current placement x(i, k) as X ′;
16: else
17: Continue the while loop in Algorithm 3;
18: Return intermediate provisioning X ′;

mi provisioning to vk is inversely related to the value of
Dps(mi)(vk); a smaller Dps(mi)(vk) means a greater potential
to reduce the overall completion time for the group. Con-
sequently, when selecting nodes for pre-provisioning, those
with the smallest Dps(mi)(vk) values are preferred. When
deploying microservices within a partition, this parameter
serves as a critical metric for determining the suitability of
node placement and ensures efficient allocation aligned with
performance objectives.

C. Multi-scale Combination

The module in this subsection aims to minimize the objec-
tive function by combining instances at varying granularities:
large-scale gradient descent merges multiple instances simulta-
neously, while small-scale gradient descent processes instances
individually to identify the optimal trade-off.

An instance combination involves merging two instances of
the same mi into one to reduce provisioning costs, which may
disrupt existing dependencies, requiring users to establish new
connections to maintain their dependency chains – a process
termed connection update. To quantify the latency changes,
we use a mapping function ψ : Pt(mi)→R, representing
the latency associated with user requests in the microservice-
to-node connection. Here, P ′t(mi) denotes the provisioning
nodes before the removal of vk, with latency calculated
as ψ(P ′t(mi)) =

∑
uh∈Ui,k

(rhi /b(lf(uh),k) + q(mi)/c(vk)).
After the removal of vk, P ′′t(mi) represents the updated
provisioning set, where users with mi requests must find a
new reliance through a connection update.

The new reliance node vq for user uh must satisfy three
criteria: (1) f(uh) and vq belong to the same group ps(mi); (2)
vq ∈ pts(mi), indicating inclusion in the updated provisioning



set; and (3) vq has the highest channel speed with respect to
f(uh), i.e., vq = argmaxvq∈pt

s(mi) b(lf(uh),q).
The selection of vq is independent for each uh,

and depends on their current routings. The latency of
the updated set P ′′t(mi) is given by ψ(P ′′t(mi)) =∑

uh∈Ui,k

(
rhi /maxvq∈pt

s(mi) b(lf(uh),q)+q(mi)/c(vq)
)
, where

Ui,k = {uh | vk ← locuh(mi)} represents users relying on
instance mi at vk for processing requests. The progress above
will lead to an increase in total completion time, quantified as
the latency loss.

Definition 8 (latency loss): The latency loss ζi,k is defined
as the increase in total completion time incurred when instance
mi is removed from edge node vk, which is expressed as:

ζi,k = ψ(P
′′t(mi))− ψ(P

′t(mi)). (14)

The two-scale gradient descent combination is outlined in
Algorithm 3. During the large-scale gradient descent in lines
1-5, we combine the instances of microservices in parallel.
The operation in line 2 verifies and updates the microservices
within the instance set in Algorithm 4. The input is the current
provisioning state Pt, and the output is a latency loss list
ζ = {ζi,k}, sorted in descending priority order for each
microservice. If no edge node hosts an instance of mi, all
user requests uh connected to mi will fail or have to rely on
the cloud servers as a fallback option. To prevent this scenario,
the microservice is skipped when the instance number of mi is
reduced to one, and mi is excluded from further combination
to ensure service continuity. We then calculate the latency loss
for each instance on the edge servers, update the priorities of
mi in descending order, and return the latency loss list. On
this basis, the ω is proposed as a hyperparameter to regulate
the number of parallel combinations in line 3 of Algorithm 3,
which limits the speed of parallel gradient descent. We update
ζi,k of each instance and find the ω minimal percentage of
instances Ωi,k as the instance set Ω for the parallel combine.
From these instances in Ω, we discard instances that have a
dependency conflict in any user dependency chain in line 4, i.e,
if a user uh has a dependency chain Eh that contains ehmi→mj

,
we call mi and mj dependency-conflicted, then we compare
ζi,k and ζi,k and discard the instance Ωi,k with a larger ζi,k.
Following the above procedure, the instances in the set Ω can
be combined in parallel in line 5.

During the small-scale gradient descent progress in lines 6-
15, the algorithm focuses on the trade-off between deployment
cost and completion time. The calculation of ζi,k remains the
same in line 8, but the instances are combined one by one
in line 10 to get a smaller gradient. We calculate the value
of the objective function of Equation (8) in lines 7 and 9 to
get the gradient, which is evaluated by Q. Here, we conduct
the serial refinement per microservice instance through small-
scale gradient δ, where δ = Q′−Q′′+Θ. Line 7 calculates the
value of the objective function Q′ before the combination of
the instance, and Q′′ is the value after the combination in line
9 respectively. Having the gradient δ above, we regard δ < 0
as the sign that the objective function starts to rise back, where
Θ is a positive disturbance factor to prevent a small rise back

to stop the whole progress.
The solution from each round of small-scale gradient de-

scent may violate the storage constraint (Equation (6)) or the
user completion time constraint (Equation (5)) if instances
relied upon by certain areas are combined. To address this,
a storage planning process (Algorithm 5) is applied in line
11, followed by a roll-back mechanism in lines 12 to 15. The
process identifies less critical microservices on vk based on
the local demand factor in line 10, as defined below.

Definition 9 (local demand factor): The local demand factor
ρ = {ρk} reflects the importance of providing instance mi on
server vk, where ρk = {ρmi

vk
} denotes the priority list. A higher

ρmi
vk

means a higher priority for the provision of mi.
The factor ρ is calculated using the FuzzyAHP method in
lines 2-7. The fuzzy properties of microservice mi consider the
deployment cost κ(mi), storage requirement ϕ(mi), number
of requesting users

∣∣Umi
vk

∣∣ and the order factor Rmi
vk

. To clarify,
the ordering property Rmi

vk
quantifies whether mi is located as

the first or last position within the user dependency chain,
calculated as Rmi

vk
= 3uf

mi
vk

+ 2ul
mi
vk

+ um
mi
vk
/
∣∣Umi

vk

∣∣, where
uf

mi
vk

, ulmi
vk

, and ummi
vk

denote the number of users for whom
mi is the first, last, and intermediate dependency, respectively.

Having the less important instance mi selected, we choose
the target edge server nearby in line 11 with the fastest
channel speed and try to migrate mi on it if the target server
does not have the same instance and its remaining storage
Φ(vk) is capable of receiving the new microservice, which is
checked in line 12. If no edge server can receive the instance,
indicating that current storage is insufficient, line 17 will return
to Algorithm 3 and continue the combination process to further
reduce the number of instances. The roll-back mechanism in
lines 12-15 will put the last combined instance back and not
combine it during the later combination rounds when there
is any violation of user completion time. The computational
complexity of Algorithm 3 is O(|M | · |V |3), where |M |
is the number of microservices and |V | is the number of
edge servers. Traversals over microservices, partitions, and
sub-partitions, along with instance contributions and resource
adjustments, collectively result in this worst-case complexity.

V. EVALUATIONS

A. Basic Setting

Our prototype was implemented in Python 3.7 on a
Windows 10 platform with an Intel(R) Xeon(R) Silver
4210R CPU, NVIDIA RTX5000 GPU, and 128GB RAM.
The dataset, derived from Microservices (Version 1.0) [23],
includes dependency analyses for 20 microservice-based
projects. For evaluation, we used the eShopOnContainers
project, configuring microservices with processing capabilities
of [1, 3] GFLOPs and data flows of [1, 80] GB/s. Edge servers
were equipped with [5, 20] GFLOPs computing power, [4,
8] storage units, and [20, 80] GB/s bandwidth. Base station
locations were set near the National Stadium, in Beijing. Tests
covered scenarios with 10 to 60 users (in increments of 10) and
cost constraints between 5000 and 8000. Our SoCL was com-
pared against Random Provisioning (RP), Joint Deployment
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Fig. 7: Gurobi (OPT) and SoCL: runtime and objective value under varying users and edge servers.
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Fig. 8: obj. (cost & latency) for different numbers of user requests (10 servers).

and Routing (JDR) [11], and Greedy Combine with Objective
Gradient (GC-OG), demonstrating robust performance under
varying conditions.

B. Experiment Results

1) Comparison with Optimizer: We compared the per-
formance of the Gurobi solver and SoCL at various user
scales, focusing on objective value and runtime. The results in
Figures 7 (a)-(d) show that although Gurobi achieves slightly
better objective values, the differences are minimal. For exam-
ple, at a user scale of 30, Gurobi’s objective value is 6207.173
compared to SoCL’s 6415.119, a difference of approximately
3.3%. However, SoCL significantly outperforms Gurobi in
terms of runtime, especially as the user scale increases, as
shown in Figures 7 (b) and (d). For 50 users, Gurobi requires
1958.646 seconds, while SoCL completes the task in just 22.3
seconds, achieving a speed improvement of two orders of
magnitude. These results underscore SoCL’s ability to deliver
near-optimal solutions with significantly higher computational
efficiency and demonstrate its scalability and practicality for
large-scale scenarios where Gurobi’s performance is no longer
feasible.

We conducted extensive experiments on varying user scales
(10 to 60 users) and edge node scales (5 to 30 nodes) to
systematically compare the Gurobi solver (OPT) and SoCL in
terms of objective value and runtime. The results indicate that
while Gurobi can achieve the exact optimal solution for small-
scale problems, its runtime increases exponentially as the
number of users and edge nodes grows, making it impractical
for large-scale scenarios. In contrast, SoCL achieves results
very close to the optimal objective value while significantly re-
ducing the solving time, demonstrating superior computational
efficiency and scalability. For user scale variations, SoCL
performs remarkably well. As the user scale increases to 50,
Gurobi’s runtime escalates dramatically to 1958.646 seconds,
while SoCL maintains a low runtime of 22.3 seconds, further
highlighting its computational efficiency. Similar trends are
observed for edge node scale variations. When the number of
edge nodes reaches 30, Gurobi’s solving time skyrockets to
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Fig. 9: Results on Kubernetes with 8 edge servers.

76447.736 seconds, SoCL solves the same problem in just
149.04 seconds, achieving a speedup of several orders of
magnitude. In terms of the objective value, SoCL remains
competitive. For example, when the edge node count is 10,
Gurobi obtains an objective value of 5025.102, while SoCL
achieves 5085.852, with minimal deviation.

2) Comparision on Baselines: We compared the perfor-
mance of four algorithms under user scales of 80, 120, 160,
and 200, and conducted an in-depth analysis of the results. The
results can be seen in Figures 8. Overall, SoCL achieved the
lowest objective values across all user scales, demonstrating
superior optimization capability and computational efficiency.
The difference in performance between the algorithms became
clearer as the user scale increased. The RP algorithm per-
formed the worst due to its random placement and routing
strategy, which led to highly unbalanced resource allocation
and failed to optimize both provisioning costs and latency. As
seen in Figure 8 (d), when the user scale reaches 200, RP
exhibited the highest objective value of 11,785.1, reflecting
its inability to handle large-scale scenarios due to unstructured
random strategies. JDR attempted to optimize latency by cate-
gorizing microservices into single-user and multi-user groups,
deploying the former close to user nodes and prioritizing
the latter on high-capacity servers. However, by neglecting
provisioning costs, JDR caused resource redundancy that led to
consistently high objective values. For example, with 120 users
in Figure 8 (b), JDR achieved an objective value of 9,123.2,
lower than RP but still significantly higher than SoCL, with
redundancy worsening as the number of users increased. GC-
OG, which combines greedy strategies with objective gradient



0 50 100 150 200 250
timestamp

0

6

12

18

24

30

36
av

er
ag

e 
de

la
y 

(m
s) RP JDR SoCL

Fig. 10: Avg delay trace on Kubernetes with 16 edge servers.

descent, performed better by selecting instance combinations
that most effectively reduced objective values. However, its
low search efficiency became a limiting factor as user requests
grew, resulting in an exponentially growing search space. With
120 users in Figure 8 (b), GC-OG achieved an objective value
of 5,817.2, outperforming RP and JDR, but still outperforming
SoCL while requiring 2,274.8 seconds of runtime, highlighting
its inefficiency in search speed.

With the scaling of the user number, RP’s objective value
grew linearly and even accelerated, indicating its failure
to scale to larger problems. JDR showed continuous in-
creases due to redundant deployments and poor resource
utilization.GB-OG worked well at small user scales, but as
requests and budgets increased, its performance declined due
to the exponential search space growth, with rising objective
values that stayed above SoCL. In contrast, SoCL consistently
achieved better results, with modest increases in objective
value. As the user scale increased from 80 to 200, SoCL’s
objective value grew from 4669.58 to 7636.863, a significantly
smaller increase compared to the other algorithms. This indi-
cates that SoCL’s efficient search and microservice provision-
ing strategy effectively avoids resource redundancy and search
inefficiency, ensuring a balanced optimization of deployment
cost and latency. Even under large-scale user requests, SoCL
maintains low objective values and computational efficiency.

C. Evaluation on Kubernetes

1) Testbed Configurations: To further validate SoCL’s ef-
fectiveness, we implemented a prototype on Kubernetes using
Python 3.11-slim on CentOS 7.6. The experiment involved 17
machines, each with 2 GB of memory, 2 cores, and 1-2 Gbit/s
bandwidth. Sixteen machines served as edge nodes providing
computing services, while one acted as the master node for
scheduling and latency recording. As shown in Figure 9 (a), we
first implemented a small-scale evaluation under 8 edge nodes
and one master node to evaluate the objective and their related
delay and cost using the RP, JDR, and SoCL methods. Then,
under 16 edge nodes and one master node, we traced user
access latency over 4 hours, during which users issued requests
every 5 minutes on average. Latency data was aggregated at
the same interval to evaluate system performance.

2) Testbed Results: The algorithms RP, JDR, and SoCL
are executed in our testbed. As shown in Figure 9 (b), we
compared the total provisioning cost and latency of each
algorithm under 50 and 70 users. The experimental results
show that although the RP and JDR algorithms achieve a low
completion time, this result depends on the full utilization

of the maximum deployment cost constraint, which increases
the total deployment cost and negatively affects the value of
the objective function. Instead, the proposed SoCL method
can balance the cost of deploying instances with the users’
requirements and place the instances in the right place to
increase the benefit. Meanwhile, as the user number increases,
the total completion time of each algorithm rises accordingly,
but we are surprised to find that the total latency of JDR
begins to fall. We consider this to be a coincidence, as the
user dependency was randomly generated. Furthermore, we
analyzed the latency of the individual users. The median
values of the RP, JDR, and SoCL algorithms are 2.795,
3.989, and 2.796 for 50 users and 2.528, 3.572, and 2.455
for 70 users, respectively, indicating that the SoCL method
provides fewer instances on the edge servers but still serves
most user requests well. We also conducted a 4-hour trace
experiment on Kubernetes, where 50 users randomly moved
among edge nodes and issued requests every 5 minutes with
stochastic service dependencies. Figure 10 shows that SoCL
consistently achieved the lowest average delay, around 8.50
ms per timestamp, outperforming RP and JDR. Although
RP appeared better than JDR overall, its randomness caused
unstable peaks (e.g., at timestamp 4), affecting QoS. JDR’s
delay was comparable to RP’s but still inferior to SoCL.
Evaluating delay stability via maximum latency, SoCL again
excelled, with a maximum delay of just 48.84 ms, significantly
lower than JDR’s 90.04 ms and RP’s 77.29 ms.

VI. CONCLUSION

This paper addresses the critical challenge of microser-
vice provisioning and routing in scalable multi-user scenar-
ios within serverless edge computing, emphasizing cost and
latency optimization under resource constraints. We propose
a scalable framework, SoCL, for efficient microservice provi-
sioning, which optimally positions microservice instances to
balance cost and latency based on user demands. Extensive
experiments, including simulations and containerized deploy-
ments on Kubernetes, demonstrate that SoCL consistently
outperforms baselines, handling large-scale user requests and
network expansions effectively. Compared to the state-of-the-
art ILP optimizer Gurobi, SoCL achieves significant reductions
in cost and latency while delivering execution times up to one
order of magnitude faster, with optimality gaps below 9.9%.

Although this work places limited emphasis on user brows-
ing behavior and interests, future research will incorporate
user behavior modeling and preference integration to support
context-aware resource management. This advancement aims
to address broader QoS challenges in edge networks and
facilitate the development of more generalized and adaptive
resource management solutions.

APPENDIX
A. Proof of Theorem 1

Proof: We establish the proof by demonstrating that a proac-
tive candidate node v(mi)

η with H(v(mi)
η ) ≤ 2 cannot reduce

the completion time of user requests. Specifically, consider
the case where H(v(mi)

η ) = 2, meaning that v(mi)
η has exactly



two neighbors. Each proactive candidate node must be directly
connected to nodes hosting user requests for microservice mi.
This requirement assumes that its neighboring nodes, va and
vb, are edge servers serving user requests for mi, with b(la,η)
and b(lb,η) denoting their respective communication capacities.
Consequently, v(mi)

η must lie on a path connecting the nodes
va and vb, which can be classified into the following two sce-
narios: (i). v(mi)

η lies on the shortest path between va and vb.
In this case, users are distributed across va and vb, generating
data volumes ra and rb, respectively. Since the deployment
cost κ(mi) is uniform across all edge nodes, the key factor is
how placement impacts communication efficiency and latency.
When deploying mi at either va or vb, the optimal location
is the one with the higher data volume, i.e., max{ra, rb}.
Assuming ra < rb, placing mi at vb is preferable, as it
minimizes transmission by serving the majority locally. In this
case, data from vb is forwarded to va, with total transmission
time rb/b(lb,η) + rb/b(la,η). Conversely, placing mi at v(mi)

η

requires both ra and rb to be transmitted, yielding a total time
of ra/b(la,η)+rb/b(lb,η), which is higher when ra > rb. Thus,
v
(mi)
η is a less efficient option. When multiple instances are

allowed, deploying directly at va and vb eliminates inter-node
transmission entirely, further improving efficiency. Therefore,
in this scenario, v(mi)

η does not offer latency advantages
and should not be considered a candidate node. (ii). v(mi)

η

does not lie on the shortest path between va and vb but
instead on a longer alternative route. Any deployment on this
path introduces additional communication delay, contrary to
the goal of proactive node selection. Hence, such a node
cannot enhance performance and is disqualified as a proactive
candidate.In both scenarios, a node with H(v(mi)

η ) ≤ 2 lacks
sufficient connectivity to improve service latency. Only nodes
with H(v(mi)

η ) > 2 can serve as effective proactive candidates,
completing the proof of Theorem 1. ■
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