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Abstract—Content delivery in vehicular edge networks faces
critical challenges due to dynamic user mobility, unpredictable
content request patterns, and limited storage at edge nodes. To
tackle these problems, we propose a distributed online framework
that jointly performs proactive caching at roadside units (RSUs)
and hierarchical prefetching from the cloud to macro base
stations (MBSs), enabling real-time adaptation to spatiotempo-
ral variations in content demand across different time scales.
Our goal is to minimize content transmission latency while
satisfying system-wide resource and cost constraints. The pro-
posed Vehicular-based Online Proactive caching and Prefetching
(VOPP), integrates trajectory-based user mobility prediction with
future content demand estimation to guide online distributed
caching. At the RSU level, we formulate a distributed online con-
vex optimization model with fine-grained gradient updates and
inter-agent coordination based on real-time mobility patterns. At
the MBS level, we construct a multi-step predicted content set
using user mobility and request forecasts, and define a value
density metric that combines popularity and delay reduction.
On both levels, additional subsequent refinement steps ensure
high-quality caching decisions. Extensive simulations based on
a real-world GPS dataset of 10,357 taxi trajectories in Beijing
demonstrate that VOPP significantly reduces transmission delay
and achieves robust performance across diverse mobility patterns
and user densities, outperforming baseline methods.

Index Terms—proactive caching, content prefetching, online
caching, vehicular edge network

I. INTRODUCTION

The Internet of Vehicles (IoV) is gradually changing our
lifestyle, enabling vehicle occupants to easily access various
forms of online content. In this context, content caching is a
critical concern in order to maintain high Quality of Service
(QoS) levels in IoV content deliveries. By distributing content
at locations near the vehicles, e.g., at macro base stations
(MBS) and roadside units (RSU) provided by the Internet
service providers (ISP), quick responses to user requests can
be achieved. Suitable caching strategies are required to ensure
that the requested content is available with low delay at the
time and place where relevant requests occur.

Suitable caching decisions depend on various environmental
factors such as the vehicles’ geographical distribution, the
users’ request pattern, MBS and RSU storage and network
constraints, and the contents’ storage sizes. Caching strategies
must jointly consider these factors while respecting overall
cost constraints. This becomes particularly challenging in

large-scale dynamic IoV environments, where the large num-
bers of MBSs and RSUs create a vast decision space and where
vehicle movements can be difficult to predict.

In this paper, we tackle the challenges of distributed online
proactive caching and prefetching in vehicular edge networks.
Specifically, we address the problem of minimizing content
transmission latency for connected vehicles under resource
and cost constraints. By accurately predicting vehicle mobility
and resulting content demands, we aim to proactively deter-
mine optimal caching decisions that significantly reduce user-
perceived delays while adhering to limited caching resources
and operational costs. Our main contributions are as follows:

o We formulate the distributed online proactive caching
and prefetching problem as a hierarchical joint opti-
mization framework, explicitly considering both content
prefetching from cloud to MBSs and proactive caching
decisions from MBSs to RSUs. The proposed model aims
to minimize content retrieval latency while respecting
capacity constraints and dynamic user mobility.

o We propose a two-level online decision-making strategy
for vehicular edge networks, reformulating the model by
introducing structured decision variables to capture the
hierarchical interactions between MBSs and RSUs.

o At the RSU level, we formulate a distributed online
convex optimization model with fine-grained gradient
updates and inter-agent coordination based on real-time
mobility patterns. Refinements via greedy elimination and
local dynamic programming ensure constraint satisfac-
tion and deployment robustness. At the MBS level, we
construct multi-step predicted content sets and define a
value density metric that combines popularity and delay
reduction. A greedy-based prefetching algorithm gener-
ates efficient prefetching decisions, with a robustness-
enhancing supplement to address prediction uncertainties.

o We conduct extensive performance evaluations through
simulations based on real-world vehicular mobility data
extracted from the Microsoft GPS dataset containing tra-
jectories of 10,357 taxis in Beijing. Experimental results
show the effectiveness and robustness of our proposed
caching strategies, demonstrating significantly improved
latency and caching efficiency over baseline methods.
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Fig. 1.

An illustration of proactive and prefetching-based online caching.

II. RELATED WORK

Content caching in the IoV environment has recently at-
tracted considerable research interest due to its significant
enhancement of user QoS. The existing researches mainly
focus on the reactive caching mechanism [1], [3]-[6], [15]-
[17], which only caches contents when the user requests it.
Zhou et al. [1] introduce a reinforcement learning framework
to minimize content access cost. However, this approach
does not incorporate proactive caching strategies or leverage
trajectory-based user mobility prediction. Yu et al. [2] utilized
a vehicle spatial and temporal trajectory prediction to realize
a proactive content caching scheme. However, this method
separated the environment area into a grid and updated the
caching contents using a replacement strategy. Peng et al. [3]
balanced the latency, traffic and workload by simulating the
edge node function as a magnet that connects each other to
form a larger caching pool. Liu et al. [4] distinguished peak
and off-peak hours to perform an average delay minimization
problem. Li et al. [S] regard the problem as a MINLP problem
using the deep reinforcement learning method. Wang and
Zhang et al. [6] proposed an DDQN-based algorithm to solve
a joint caching and offloading problem. Wang et al. [17]
proposed a popularity-incentive caching scheme to increase re-
quest availability and reduce congestion. These works perform
well in a Mobile Edge Computing (MEC) content caching
environment, but they can be further improved by predicting
the user trace and proactively caching the requested contents.

Such a distributed content caching system can accommo-
date learning-based methods well [7]-[14], [18]. Feng et al.
[7] proposed a federated-learning-based caching scheme with
trajectory and content popularity prediction. Wu et al. [8]
utilized a dueling deep Q-network to minimize the content
transmission delay. Xie et al. [9] utilized a federated fine-
tuning and co-inference mechanism to minimize delay and
energy consumption. Liang et al. [10] proposed a federated
learning framework that optimizes global and local models.
Qiao et al. [11] considered client selection to minimize the
objectives by proposing a distributed federal learning method.
Tang et al. [12] proposed a two-timescale optimization frame-

work considering service placing, resource provisioning and
workload scheduling decisions. Li et al. [13] focused on the
file priority and least recently used info as cache replacement
strategies. Hu et al. [18] proposed a popularity prediction-
based optimization method for cooperative caching, favoring
smaller base stations and those with higher demand. However,
learning-based methods demand frequent communication and
model training and may thus not be applicable in some
resource-constrained environments. In this work, we proposed
anovel IoV content caching system by utilizing RSU proactive
caching and MBS content prefetch mechanism to further im-
prove content delivery and minimize the average transmission
delay.

III. MODEL AND PROBLEM FORMULATION
A. System Model

As shown in the Figure 1, the MEC network is modeled as
a three-tier caching architecture comprising the cloud layer,
the edge layer, and the vehicle layer. The edge layer consists
of macro base stations (MBSs) and roadside units (RSUs).
We assume that the contents requested by users are initially
located in the cloud data center. The service area of the
RSU is covered by the MBS. We use c to represent the
cloud. Let M = {m;} denote the set of MBSs supported
by operators. Each MBS m; has a storage capacity denoted
by ¢(m;). Similarly, let R = {rj} be the set of RSUs, where
each RSU r; has a storage capacity denoted by ¢(ry). Let
U = {u;} denote the user set of mobile vehicles. To capture
user mobility, we assume that the system operates in a time-
slotted structure, with the timeline being discretized into time
slots t € {1,2,...,T}. In this work, we assume that users
move irregularly and frequently between multiple edge servers.
At each time slot, vehicular nodes dynamically interact with
RSUs and MBSs to complete their content requests. Addition-
ally, we use H = {h,} to denote the set of variable contents
provided by the operators, and the data size of each content
is ¢(hs). The requests from mobile users are characterized
using a mapping function 7 : u; — {1,2,...,|H|}, where
m(u;) = a specifies that the content h, is requested by the
user u;. Meanwhile, H,, and H,,, denote the sets of content
cached in the RSU r; and MBS m;.

B. Delay Model

To ensure general applicability, we assume that users’ con-
tent requests remain consistent during a single macro time slot.
In the system, the transmission rate between different entities
is determined by the signal-to-noise ratio (SNR). The SNR
between the RSU 7, and the user u;, denoted as SNR,, ., is
given by SNRy, ., = Pryu; Gryu; /Erpui 2y, 00, 0y Where
Dry.,u; 1S the transmission power, G, ., is the channel gain,
&y, u; 18 the path loss factor dyr, v, s the distance between the
RSU and the user, and ark u; 18 the noise power. Similarly,
the SNR for the MBS m; to the user u; and the cloud to
the MBS are also calculated based on that equation, which
are defined as SNR,, ., and SNR,; .. Furthermore, the

transmission rate v, ,, between the RSU and the user is



derived from the SNR and the allocated bandwidth b,, ., as
Urpou; = bry, u; 1089 (1 + SNR,, ;). Similarly, the transmis-
sion rates for the MBS to user and cloud to MBS paths are
Uy —u and Vesmy» which can be obtained by using the same
equation, and replacing the allocated bandwidth corresponding
the by, u; and by, .. The transmission delay for user u; at
time ¢ depends on where the requested content is cached and
the corresponding transmission path. We consider user content
retrieval scenarios according to the location from which the
requested data is delivered. First, if the requested content is
cached at the RSU ry, the user retrieves it directly from the
RSU, resulting in a delay determined by the transmission rate
Ury,u;- 1he delay in this case is the following:

ko,

Urp—u;y

where mﬂ(ui),k(t) is a binary variable that indicates whether
the RSU ry, has cached the requested content hg, i.e., w(u;) =
a. We use k,, to denote the size of the requested content of h,
by user u;, where k,,, = o, -¢(h,). Here, the parameter o, €
[0, 1] indicates that a connected vehicle user may request only
a fraction of the entire content, such as a specific segment in
video streaming applications, rather than the complete file.

Specifically, if the requested content is not cached in the
corresponding RSU, it is forwarded to the associated MBS
covering that RSU, ensuring seamless and uninterrupted de-
livery of data services to users of connected vehicles. If the
MBS has cached the requested content, it directly transmits
the content to the user u;. In this scenario, the transmission
delay is determined by the transmission rate vy,; ., between
the MBS and the user, and can be expressed as:

ku,
A () = (1= Zru) k() Yn(ui),;j ) - —=—,  (2)

Um;—u;

where y(y,),;(t) is a binary variable that indicates whether
the MBS m; has cached the requested content 7(u;) of w;.

Finally, if neither the RSU nor the MBS has cached the
requested content, the MBS must retrieve the content from
the cloud and then transmit it directly to the user. In this case,
the total delay includes both the cloud-to-MBS transmission
delay and the MBS-to-user transmission delay:

ku, k.,

Umj,c Umj,u
The total transmission delay for the user w; at time slot ¢,
denoted as D, (t), is the sum of the delays from these three
cases:

Dy () = dy, () + dy; () + i, (B).- )

C. Cost Model

In addition to the transmission delay, the caching costs
associated with storing and retrieving content also play a
decisive role in the performance of the system. For each
content h,, the caching cost on the RSUs is denoted as
¢r(ha) = vr-®(hg), which is linear with the size of the cached
content h,, and -, is the unit cost of data storage. Then, the

storage cost of each RSU r, at time slot ¢ is given by:

Cry, (t) = ZhaeH xTr(ui),k(t) : CT(ha)' (5)
Similarly, for the MBS, the caching cost of h, is defined as
cm(ha) = Ym - &(ha), where 7, represents the unit cost of
data storage on the MBS. Thus, the storage cost of each MBS
m,; at time slot ¢ can be expressed as:

ij (t) = ZthH yﬂ(uL),g (t) : Cm(ha)- (6)
The overall cost ¢(t) for the system at time slot ¢ as follows:

c(t) = ZrkER Cry, (t) + ij eM Em; (). (N
D. Problem Formulation

In this paper, we formulate the online caching optimization
problem under the multi-layer caching architecture as a con-
strained optimization problem. The objective is to minimize
the average transmission delay for all users over a given
time period while considering the caching cost and resource
constraints of the system. The calculation of the delay depends
on the location of the cached content and the transmission
path. The optimization problem can be expressed as follows:

S .1
P; : minimize D= jlgréo T Yover 2ou,ev Dui(t) (8)

s.t. ZhaeHTk d)(ha) < ¢(Tk)7 ZhaEHmj ¢(ha) < ¢(mj)7 )

Z?:l C(t) S C'mam (10)
xﬂ(ui)yk(t)7yﬂ‘(ui),j(t) € {0,1}. (1)

Equation (8) is the objective function, and equations (9) to (11)
are constraints. Equation (9) is the constraint for the storage
capacities of RSU and MBS. The total cost constraint over
the entire caching period is formulated in Equation (10), which
ensures that the cumulative caching cost over the entire period
does not exceed the budget Cy.x. Equation (11) characterizes
whether the content requested by user u; is cached at 73, or m;
at time slot ¢, where x(,,)x(t) € {0,1}, and yr(y,);(t) €
{0, 1} are binary indicators denoting the caching status on the
RSU and MBS, respectively.

E. Reformulation

To tackle the above optimization problem, we first change
the perspective from the user level to the RSU and MBS level,
where the prefetching and caching decisions are made. To this
end, we introduce structured decision variables that capture the
hierarchical relationships between user service requests and
content caching across network layers.

We begin by modeling each RSU as an individual agent
and explicitly consider the corresponding caching decisions.
Here, x1(t) = [21.1(t), v2.x(t),..., 70k (t)]T represents the
caching decision of the contents of the k-th RSU r; at time
slot t. For each RSU 7}, the local loss function at time slot
t, denoted by i (xx(t)), characterizes the performance of the
service in terms of the delay perceived by the user when
requesting content from . According to the Equations (1) to
(4), the transmission delay experienced by the mobile user u;
is determined by the location of the cached content associated
with the user’s request. As previously defined, 7(u;) = a
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Algorithm 1 Module: Multi-Step User Arrival Prediction

Input: U, R, w;

Output: Arrival probabilities of users P(t);

1: for each user u; € U do

Predict w-step future trajectory using social-LSTM;

Initialize counter p;(ry) =0, Vry € R;

for each predicted location ;(¢) in the w-step do
Find all RSUs rj, such that §;(t) € coverage(ry);
for each such r; do

pi(re) < pi(ry) +1
Normalize: p;(rx) < p;(r)/w for all 7, € R;
9: Populate the i-th row p,(¢);

10: Return P(¢);
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Fig. 2. The overview of the VOPP framework.

denotes that user u; requests the content h,, and if the request
is served by RSU ry, ie., z,x(t) = 1, the transmission
delay is d;, = ky, /vy, ;. Otherwise, if z4(t) = 0, ie.,
the content is not cached at the RSU, the request is redirected
to the MBS m; that manages ry. In this case, the transmission
delay becomes either dj;; = ki, /vmj_mi if the content is
cached at the MBS, or Ky, /Ui, ¢ +ku; /Vm; -, if it has to be
fetched from the cloud via the MBS. To facilitate the analysis
and isolate the impact of RSU-side caching decisions xi(t),
we initially assume that all contents requested by users and
associated with RSU 7y, are cached in the corresponding MBS
mj, ie., Yo ,(t) = 1, Vh, € H,,. Under this assumption,
the transmission delay from the MBS to the user reflects the
baseline delay. We then explicitly incorporate the additional
delay term k,, / Um;,c in scenarios where the MBS no longer
caches the requested content, i.e., when the caching decision is
updated to y,_; () = 0. Now, we define the local loss function
to quantify the caching performance of each RSU as follows:

Zxa (K [ Vr g (1_xa(t))'(kui/vmj—>‘wi)? (12)
Tq €EX

where z, € {0, 1} represents the a-th binary component of the
decision vector xx(t). By aggregating the local losses from all
agents (i.e., RSUs) over the entire time scale, the total system
loss is given by Zt 1 ZlRl I (xk(t)). Consequently, the
optimization problem on the RSU level can be reformulated as
minimizing this total loss. To enforce long-term cost efficiency,
we incorporate the cost constraint introduced in Equation (10).
This constraint can be equivalently expressed as the following
inequality constraint function:

g(x) = S

Accordingly, the goal is to develop distributed sequential deci-
sion algorithms through which each agent selects actions that
minimize the cumulative loss across RSUs. The performance
of such algorithms is characterized by the regret that occurs
for each agent [22], which for agent 7 is given by:

reg(k, T) := Yo,y le(Xk () — Yop_y In(x¥).

U (. (t

c(xx(t)) = Cmax < 0. (13)

(14)

Here, x* = argmingex Zthl ZLR:ll Ik (xk(t)). The local
loss functions I (xx(t)) and the cost function g(xj(t)) are
convex and possess bounded gradients. Specifically, we as-
sume that there exist constants / > 0 and g > 0 such
that: maXke R MaX¢e (1., 7} MaAXy, (t)eX ||Vlk(Xk(t))|| < 1,

7y maxy, nex [|[Vo(xi(t))[| < g.

The regret satisfies the following bound:
Theorem 1: For each agent 7, € R and T > 1, we have

maxee{1,...

reg(k,T) < (1/28:)|R| - M + B - |R| - I + B; -
g2C2. (|R| — 1)2/|R|n?_, with constraint (10).

IV. ALGORITHM DESIGN

In this section, we present the hierarchical online decision
making process underlying the VOPP framework (Figure 2),
which jointly addresses content caching optimization through
prefetching from the cloud to the MBSs and distributed proac-
tive caching from the MBSs to the RSUs. VOPP integrates
structured decision variables to capture cross-layer depen-
dencies and enable coordinated and latency-aware caching
strategies in vehicular edge networks.

A. RSU-Agent-based Distributed Online Decision Making

To enable decentralized and timely decision making at the
network edge, we reformulate the proactive caching problem
into a distributed online convex optimization model. In this
formulation, each RSU acts as an agent that makes caching
decisions based on locally observed requests. Fine-tuning is
performed based on online gradient descent on time slots and
by adapting to dynamic content demand and mobility patterns
while respecting local capacity constraints, ensuring scalability
and responsiveness in large vehicular edge environments.

1) Mobility-aware Content Prediction: In vehicular edge
networks, accurate prediction of requested content at each
RSU is essential for effective proactive caching. However,
uncertainty about the vehicles’ mobility translates to uncer-
tainty about future content requests. To tackle this challenge,
we propose the construction of a fine-grained content demand
table at the RSU level based on sequences of overlapping
multi-step trajectory predictions. Specifically, we use historical
vehicle trajectory data and apply the social LSTM model [21]



Algorithm 2 Mobility-aware Content Table

Algorithm 3 Online Distributed Caching algorithm, (ODC)

Input: P(t), 7(-);
Output: Content-RSU probability matrix Q(t) € RIIxIEl;
1: for each RSU r, € R do
2: for each content h, € H do
3: Gak(t) < 1 = I1u,cvmu=a(l = Pi(re));
4: Return content-RSU probability matrix Q(¢);

to predict the future positions of vehicles over a prediction
window of w time steps in a sequence of fixed-length time
series. For each predicted coordinate point, we associate the
user with a specific RSU if the point falls into its coverage
radius.The probability of the user w; arriving at each RSU is
then obtained based on Algorithm 1. For each user u; € U,
we predict a sequence of future trajectory coordinates using
the social-LSTM model, and the trajectory is represented as
a sequence of w location points §;(t). Now, we map each
predicted location §;(t) to the RSU that covers the location.
A counting variable p;(ry) keeps track of how often wu; is
predicted to enter the coverage of r;. The final count for
each RSU is normalized by the prediction steps w, resulting
in an estimated arrival probability p;(ry) of user u; at RSU
ri. Finally, these probabilities are combined to form a matrix
P(t), where each row p,(t) represents the arrival distribution
of the user u; across all RSUs at time slot ¢.

2) RSU-level Content Demand Table Construction: To sup-
port proactive caching decisions, we construct a probabilistic
requested content table Q(¢) for each time step. For each RSU
r, € R and the content h, € H, we calculate the probability
Qa,k(t) € [0,1] of content h, being requested from the RSU
r1 during the time slot ¢, which contributes to the probability
matrix between user and RSU P(t) € RIVIXIEL Specifically,
for a given content h,, we identify all users requesting it and
aggregate their probabilities to derive the overall probability
of line 3 in Algorithm 2. Then, we construct the probability
vector q(t) for each RSU 7. Finally, we obtain the complete
content-RSU probability matrix Q(¢).

3) Online Distributed Proactive Caching: Based on the
predicted content RSU probability matrix Q(¢), we introduce
the distributed online caching algorithm shown in Alg. 3,
which allows each RSU to proactively update its caching strat-
egy in response to the user mobility. The algorithm operates
over a sequence of macro time slots in which each RSU 7y,
incrementally updates its continuous caching decision vector
Xi(t) based on historical decisions and predicted content
demands. At the start of each macro time slot ¢, an initial
decision is generated using an exponential smoothing strategy,
by adding the previous decision x; (¢ — 1) with the predicted
content demand probabilities q,(t) by the weight value «,
where xj(t) = axp(t—1) + (1—a)q,(t). Then, each time slot
is divided into 7 time slices to allow local decision refine-
ment. Within each slice ¢, each RSU evaluates the local loss
function and updates its decision X} () using a sub-gradient
method. The update incorporates both the local gradient V()
and a penalty term proportional to the constraint violation

Require: Q(t), a, 7, A(t);
Ensure: Proactive caching strategy X';
1: Initialize x4 (0) = 0;
2: fort =1to T do
3 Initial decision X (t) = axg(t — 1) + (1 — a)q,(t);

4: Split time slot ¢ into 7 slices; > fine-grained slices
5: for . =0 to 7 do > fine-tuning steps
6: Update equations (12) and (15);

7: Each r, communicates X (2) to its neighbors r;;
5 Update z4(1) = 3,7 [A(1)]1%; (0):

9: Projection xj (2 4+ 1) = IIp(zx(2));

10: Update Mg (2) = M;

11: Discretization Xy, (2) < 1(z4 > 9|V, € Xi);

12: if constraint (9) does not hold then

13: Break Roll back and stop tuning;

14: Decision refining with Algorithm 4;

15: Return X = {x, ()|t € {1,...,T}};

Algorithm 4 decision refining

Require: decision x(t);
Ensure: decision X (t);
1. X < 1(z, # 0|Vz, € Xp);
2: if x; = 0 then
3 Return x;, =0
4: while constraint (9) not holds do
5: arg minxQEXk(t){Xk (t)} =0;
6: Calculate x* based on DP using prediction values;
7: Xg(t) < Xg(t)| arg minge gx, (¢),x3 e (X);
8: Return Xxj.

[9(xk(2))]+, modulated by a dual variable Aj(z), where

X, (1) = X(2) — Bu[ VI (xk (2) + e ()09 (x1:(1))]+].  (15)

To enable distributed coordination, each 7 incorporates
the decisions of its neighboring RSUs to form an aggregated
intermediate decision vector zx(¢). The aggregation progress
is performed via a weighted averaging process governed
by dynamically constructing a row-stochastic influence ma-
trix [A(t)]x; based on real-time vehicular mobility patterns.
Specifically, each element is determined by the number of
vehicles moving from r; to 7. These transition frequencies are
normalized to ensure that each row of [A(t)]x; sums to 1, thus
the convexity of the update step is preserved. After that, the
aggregated decision vector is then projected onto the feasible
continuous region BIH ‘, where z, € B |H |, to ensure compli-
ance with memory constraints, yielding the updated decision
xi(2+1) in line 9. In line 10, we update the dual variable.
Afterwards, to ensure deployable binary caching strategies,
the continuous vector is further discretized via thresholding to
obtain X (z). A feasibility check is performed by discretization
to verify compliance with capacity. If the decision violates
constraints, the algorithm rolls back to the last feasible state
and stops further fine-tuning progress within the current large
time slot. Finally, we apply a decision refinement module, as



Algorithm 5 greedy-based complementary prefetch
Require: ¢(h,), N'(hy), A(hy) Vh, € H;
Ensure: decision y;(t);

1: Calculate value density V;(h,) of each content h,;
Construct content list I;,; by descending order of Vi(ha);
for h, € 1,,. do ©> initial greedy caching decision

if O(ha) < 0(m;) — e, , 9(hy) then

Hy, < Hypyy U{ha}s

Construct pr(k) = {hqo|argmaxy _p Vj(ha)}s
H,,,  H,,, U Hy?™,
Hmj — local 0pt1m1zed using ﬁmj as the object set;
yj(t) — 1(yj S Hijyj S y]');
L, = {halys = 0,argmax A(hg)}
for h, € L,,; do > remaining storage supplement

R A o

—_—
- o

12: if ¢(ha) < ¢(my) — ZhbeH,nj ¢(hy) then
13: Ya = 1,ya € y;();
14: Return y,(t)

shown in Algorithm 4, to improve the quality of the discrete
decision, further refining the caching efficiency. The algorithm
returns a sequence of binary caching decisions in B/?|, where
xi(t)|t € {1,...,T} across all RSUs.

To further refine the caching decision obtained from the lo-
cal optimization at each macro time slot, we propose the deci-
sion discretization strategy shown in Alg. 4, which integrates a
greedy elimination procedure and local dynamic programming
based on the content loss contribution to ensure constraint
satisfaction while minimizing the total delay. We start by dis-
cretizing the continuous decision vector from the subgradient
optimization using a greedy removal strategy (lines 1 to 5).
First, the content with non-zero values z, € x; # 0 is
added, and the algorithm iteratively discards the content with
the smallest decision weight arg min,, e, (+){Xx(t)} until the
caching constraint (9) is satisfied, whereby an intermediate,
feasible discrete solution can be obtained. To further improve
this greedy solution, we propose a local dynamic program-
ming (DP) method based on the subset of candidate contents
according to their contribution to the total loss. We introduce
the notion of content loss contribution, which quantifies the
benefit of caching this content on a given RSU.

Definition 1 (content loss contribution): The content loss
contribution, i.e., the loss reduction when caching content h,,
on RSU Tk is q)(haﬂ"k) = lk(()) — lk(X‘ma:be:O’hb#hQ).

The subset of contents that were marked as the relaxed
decision (z, > 0) is selected as the candidate set, which
are treated as DP objects, where the object size corresponds
to the content size and the object value is derived from the
estimated delay reduction based on the predicted user demands
®(hg, ). Having obtained both the greedy xi(¢) and the
refined x* generated by the DP, we evaluate the corresponding
objective loss for each candidate. The candidate with the lower
predicted loss is selected as the final decision X(t).

B. MBS-level Prefetch

1) Content Popularity Prediction: To enable effective
prefetching at the macro base station (MBS) level, we con-
struct a predicted content set based on future user trajectories
and their service requests. Since each user u; produces an
w-step predicted trajectory window over future time slots,
we aggregate these trajectories and associate each predicted
location with its corresponding serving MBS. Based on the
user-content mapping, all content requests predicted to fall
within the service coverage of a given MBS m; are aggregated
to form a predicted content set H,,,, which is performed
over an w-micro slot prediction window, reflecting the fact
that MBSs operate on a lower update frequency compared
to RSUs. Specifically, the MBS caching decisions, denoted
by y,(t), are updated every w time slots rather than at each
individual time slot. This prediction and aggregation process
is visually highlighted in red in Figure 2. Subsequently, we
quantify the popularity A/ (h,) of each content in the predicted
set by counting the number of times it is expected to be
requested under the coverage of the same MBS, which reflects
the aggregated demands within the prediction window.

2) Value Density Evaluation: To make content prefetching
decisions, we treat the selection of contents for each MBS as
a 0-1 knapsack problem, where each content item is modeled
as an object with a cost (storage size) and a benefit (delay
reduction based on predicted requests). The objective is to
maximize the overall delay reduction under the MBS storage
constraint according to the prediction windows. To simplify
the notation, we use D,,(t)(>9) to denote the delay of u;
at time slot ¢ when content h, is not cached at either the
RSU or the MBS, where Dy, (t)®9 = Dy, (t)|2, ,=0,y. ;=0-
Similarly, D,, (t)(>") represents the delay when content is not
cached in the RSU but is available at the MBS, where z, j, =
0, yYo,; = 1. Then, the delay reduction is defined as

Definition 2 (delay reduction): Let A(h,) be the delay re-
duction of h,, which quantifies the transmission delay benefit
when the content is cached at the macro base station (MBS)
instead of being fetched from the remote cloud, where

A(ha) = [Duz (t)(070) - Dui (t)(o’l)] (ui)=a- (16)

Definition 3 (value density): The content value density
V;(hq), which quantifies the caching worthiness of the content
he on a given MBS my, is: V;(hq) = N (ha) - A(ha)/¢(ha),
where s(h,) is the content size, and N (h,) represents the
content popularity.

The MBS caching decision is generated by a hybrid strategy
combining greedy selection with local dynamic programming
correction described in Algorithm 5. We start with an initial
greedy phase in lines 2 to 5, where the contents are selected in
descending order of their value density V;(h,) until the storage
capacity of the MBS m; is reached. On this basis, we construct

a candidate set H,,* *) by combining the initial greedy
selection with the top k contents with the highest value density,
where Hmp(k) = arg maxﬁ cr Vi(ha). Then, we identify the
optimal subset from H tOP(k) that maximizes the cumulative
value under the capa01ty constraint. Here, the value density
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is treated as object utility and the content size as weight,
which enables a refined selection beyond greedy heuristics.
However, due to potential deviation between the predicted and
real user distribution, relying only on the locally optimized
DP decision may result in suboptimal cache performance in
practice. Specifically, under the predicted demand, content
requested by unexpectedly arriving users may be missed.
Therefore, we carry out a supplementary search step that aims
to improve the robustness of the caching strategy by filling the
unused memory based on the evaluation of the content delay
gains A(h,) (lines 8 to 10). Subsequently, we obtain the final
decision y,(t) from the caching set H,,; for the MBS.

V. EVALUATIONS
A. Basic Setting

We conduct our experiments using a real-world mobility
dataset provided by Microsoft, which records GPS traces from
10,357 taxis operating in Beijing [19], [20]. To focus on a
dense urban area, we mark out a 2.9 km? square area centered
around Financial Street, Beijing as the center point (coordi-
nates [116.36032115, 39.911045075]). The selected area spans
a longitude range from 116.3518143 to 116.368828 and a
latitude range from 39.8996048 to 39.92248535. First, we
implemented coarse-grained filtering of the trajectory points
through the entire dataset inside this area, and we got 8432
users. To ensure the temporal continuity and richness of
each trajectory, we apply a fine-grained filtering criterion by
discarding any trajectory with fewer than 50 GPS points. In ad-
dition, the simulation environment is configured with multiple
RSUs and MBSs deployed within the selected area. The RSUs
are evenly distributed and configured with constrained storage
and computing capacity to approximate realistic vehicular
edge network conditions. The MBSs are strategically placed to
cover multiple RSUs and operate at a lower update frequency.

B. Experiment Results

1) Evaluation of Average Delay: We compare the pro-
posed VOPP framework against three baselines: MSTPS-based

Adaptation (MSTPS-A) [2], RSU Proactive Caching (RPC),
and MBS Prefetch Caching (MPC) for different user counts
from 100 to 264, and show consistent effectiveness in reducing
the overall delay in different scenarios. The results in Figure 3
show that the VOPP framework demonstrates adaptivity to
sparse user distributions and effectively maintains caching
performance even with a limited number of users. For exam-
ple, at a user scale of 100, VOPP achieves an average delay
of approximately 30.34 seconds, significantly outperforming
MSTPS-A and RPC, both of which require around 40 seconds.
This performance gap highlights the robustness of VOPP in
scenarios where proactive caching and prefetching could be
expected to degrade due to insufficient users. Moreover, as
the number of users increases, the delay of VOPP remains
lower compared to all baselines.

We conducted extensive experiments with varying numbers
of users ranging from 100 to 264 users to systematically
evaluate the performance of VOPP against several represen-
tative baselines. Here, the MSTPS-A method performs well
in high user number scenarios but struggles to perform well
in a low user number scenario. We ascribe this observation
to the low user number causing a low number of in-group
users for each RSU, resulting in inaccurate caching. The MPC
method becomes overwhelmed when facing a large number
of users. Because the MPC method considers the MBS layer
prefetching strategies without conducting proactive caching
in the RSU layer, the method cannot take full advantage
of the RSU resources, increasing the burden on the MBS
layer. Thus, the MPC method gets worse when the number
of users increases. The results show that VOPP consistently
has a lower average transmission delay for different numbers
of users and outperforms other algorithms. As the number of
users increases, MSTPS-A improves in performance but is still
slightly inferior to VOPP.

2) MBS-layer Evaluation: We compare the performance
of four representative caching strategies implemented at the
MBS layer to evaluate the effectiveness of our proposed
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content prefetching method, and the baselines include Greedy
based on Value Density (G-VD), DP based on multiple-step
Prediction trajectories (DP-P), Greedy based on Popularity (G-
P), and Greedy based on Delay Gain (G-DG). We evaluate the
performance of different MBS-level caching strategies under
varying memory capacities. As shown in Figure 4, the G-
DG baseline consistently performs significantly worse than
the other methods across all memory configurations. This
indicates that delay gain alone is not sufficient to effectively
guide caching decisions. In contrast, strategies such as G-
VD and DP-P, which consider both popularity and delay
properties, show better adaptability in content selection. We
then performed extensive experiments with MBS memory
size, where the average transmission delay decreases for all
strategies. This is expected since a larger cache can store more
high-quality content, reducing the likelihood of costly content
retrieval from remote sources.

3) RSU-layer Evaluation: We evaluate the RSU-layer per-
formance by comparing the proposed VOPP method’s ODC
algorithm (cf. Algorithm 3) with three baselines: MSTPS-
based Adaptation (MSTPS-A) [2], RSU without Neighbor
Cooperation (R-NC), and RSU without Refinement (R-NR)
under different RSU memory size. RSUs with a large average
number of users were treated as “large” RSU, while the
others were treated as “normal” RSUs, with a “normal 2G
/ large 4G” setting describing a sufficient RSU-layer capacity
and a “normal 1G / large 3G” setting describing a capacity
shortage. From the results in Figure 5, the VOPP method
shows a consistent and superior performance both on sufficient
and insufficient RSU-layer capacity situations. The MSTPS-
A method reveals the effectiveness of the probability-based
caching idea but is still slightly worse than the proposed
VOPP method. The R-NC method disabled the communication
between RSUs so that RSUs cannot proactively foresee the
incoming users from their neighbor RSUs. This results in an
isolated caching that only depends on the LSTM’s predictions
and performs badly in the evaluation. The R-NR method
replaced the decision refining by a simple discretization and
feasibility check method, which is blind to the content prior-
ities and fails to trade off those contents under the constraint
of memory size, resulting in poor performance.
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VI. CONCLUSION

This paper addresses the challenge of minimizing trans-
mission delay in vehicular edge networks through a hier-
archical framework for distributed online proactive caching
and prefetching. We propose VOPP, a two-level optimization

framework that jointly considers proactive caching at RSUs
and prefetching from the cloud to MBSs, guided by multi-step
trajectory-based demand prediction. The RSU-level decision-
making adopts a distributed online convex optimization model
with coordination among agents and a decision enhance-
ment mechanism combining greedy elimination and dynamic
programming. At the MBS level, we construct a predicted
content set using user mobility forecasts and employ a hybrid
greedy-complementary algorithm to generate robust prefetch-
ing decisions under uncertainty. Extensive experiments on a
real-world GPS dataset demonstrate that VOPP significantly
reduces transmission delay and consistently outperforms base-
line methods across varying user densities and mobility pat-
terns. Future work will explore joint learning-based optimiza-
tion for content popularity and mobility pattern estimation, and
further extend the framework to handle federated scenarios
with multi-domain coordination and privacy constraints.
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VII.
A. Proof of Theorem 1
Proof: We start with the evolution of ||x (¢ + 1) — x*||2.

(135 (¢ + 1) ||* =T (2, () —x7[|* < |z (t) =x7[]* (17)

Since z(t) = Zlill [A(t)]k;X,(t), and for each time slot,
X} (t) = %(t) — 511V 11 (x(1)) + A (£)0]g(x(1))]+]. In order
to design and bound the analysis, we perform the reconstruc-
tion by introducing the online augmented Lagrangian function:

L &g (£) Ak (t))élk(xk(t)ﬂ-)\k (g (X ()]t / 2 (1)

where —1; /2 (t)? is the regularization term. To simplify
the presentation, we use /x(¢) to denote the gradient of
the augmented function where /5 (¢) = Vx Lk (xk(t), Ak (2)).
Then, we have

[ (¢ + 1) —x*| 2 < || S Ayl () —

APPENDIX

(18)

Be Vi (8)]—x*[|?

< S A kgl (8) = Be v (8) —x7]|[?
< SR IA® k112 5 1 () = Be vk (1) — x7]] 2
< S Nz (8) — B 75 (1) —x7])2 (19)

[A(t)]k; is a row stochastic matrix, i.e., the sum of each row is
L. Then, we have || 21 [A()]k; [ (8) = B i (8)] = x*||? =

| 5 )]kl (1) = B ik (£) = x7][[2. According to the
Cauchy inequality, we can have equation (19). Since k and j
are used as indices here, the summation result does not change,
so we obtain

x5t + 1) —x*[[2 < S [ (0) —x* — B, 7 (D]]2 20)

The right side of the equation reduces further to
R R N
“ﬂl\[xmfx ol = S () —x* (|2 +

B2 Ik ()28 7 (t) (xk(£)—x*) From the def-

initions above Vi (t)(xx(t) —x*) is the simplified notation of
xLk (X (), A () (X () — x*), where /xLi (X (t), Ak (t))~

[Le(xk(t) + hA(t) — Le(xk(t), Ae(t))]/h.  Due
to the function’s convexity, one can deduce that
Vi Ok(t) — x*) < Le(xi(t), Ar(t) — Li(x*, i (1))

With the online augmented Lagrangian function (18) yields

o [0 (8)) + A (8) g (3 (0] = (e /2) Ak (1) =
(Te(x") + Ae(B)g ()] — (0/2) A (t))]

0 (i ()L () S N (8) ([ (0 ()5 9 (X))
(21)

Based on Equation (13), we obtain [g(z*)]+ = 0. In addition,
since [g(xx(t))]+ > 0, then we have

Ve (e () — 1 (x9)] < (1728051 I (1)—=
~(1/280) 1% (t + 1=x* [P+ Be /20| 7 ()12

Since the squared Euclidean norm is non-negative and with
a positive scaling factor 3; > 0, this expression satisfies
(1/28:)||xx(t + 1) — x*||*> > 0. In addition, for each RSU 7,
the caching decision x;(¢) must satisfy the storage capacity
constraint of Equation (9) in each time slot ¢. We use M to
denote the length of the decision vector X (¢), which means the
maximum number of contents that can be cached in each RSU.
Consequently, the deviation between the caching decision and
the optimal solution satisfies ||xx(t) — x*||> < M, and by
considering all RSUs we obtain the bound ZLR:Il || (t) —
x*||? < |R| - M. Therefore, we have

o 0 (0 ()~ ()] <5 [ RV [k (112 (23)

Let [ and § denote the maximum of the gradient of
I (xk(t)),Vk,t and g(xx(t)). For the last term of the right
side of the equation, || 7k (¢)||? further reduces to
2
17k DI = [[7x L (xk(£), A (2))
= | V(xx () + Ae()0lg (% (1))]+ ]
< 2| Vik (xi (8))1|* + 27%(8)* (|09 (xx, (1)) 4 ||
<207 +29° - A(1)? = 207 + 2 - [g(xi ()13 /i
Since the value of [g(xx(t))]+ characterizes the violation of
the cost constraint in each time slot ¢, and considering the
long-term cost constraint, the cumulative caching cost for all
RSUs over the entire time scale {1,...,7T'} cannot be higher
than Cryax. Thus, for each agent (RSU), at any given time slot
t, we have [g(xx(t))]+ < C-(|R| — 1)/|R|. Then, we have
7k (DI < 28 +25° - CLa (IRl = 1)*/|RIPni_y  (24)
Therefore, combining the inequalities (23) and (24), we have
o 16 (% (8)) = L ()] < (1/2B,)|R| - M + B, - |R| - P+
B ‘QOI%EXORI —1)?/|Rlni-y. (25)
|
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