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Abstract—The vigorous development of IoT technology has
spawned a series of applications that are delay-sensitive or
resource-intensive. Mobile edge computing is an emerging
paradigm which provides services between end devices and
traditional cloud data centers to users. However, with the
continuously increasing investment of demands, it is nontrivial
to maintain a higher quality-of-service (QoS) under the erratic
activities of mobile users. In this paper, we investigate the service
provisioning and updating problem under the multiple-users
scenario by improving the performance of services with long-
term cost constraints. We first decouple the original long-term
optimization problem into a per-slot deterministic one by using
Lyapunov optimization. Then, we propose two service updating
decision strategies by considering the trajectory prediction con-
ditions of users. Based on that, we design an online strategy by
utilizing the committed horizon control method looking forward
to multiple slots predictions. We prove the performance bound of
our online strategy theoretically in terms of the trade-off between
delay and cost. Extensive experiments demonstrate the superior
performance of the proposed algorithm.

Index Terms—mobile edge computing, online service provision-
ing, mobility, quality-of-service (QoS).

I. INTRODUCTION

The vigorous development of Internet of things (IoT) tech-
nology has led to the explosive growth of mobile terminal
equipment and data volume. At the same time, a series
of resource-intensive and delay-sensitive applications, such
as augmented reality (AR)/virtual reality (VR), intelligent
driving, and dynamic content delivery, have emerged and been
widely used [1], [2], [4], [6]. It is difficult for the traditional
cloud data center to meet the performance requirements due
to the long distance from massive terminals. Mobile Edge
Computing (MEC) is a promising framework to solve this
problem by deploying edge servers at base stations to supply
computation, storage, and networking resources for multiple
users [3]. However, the finite capabilities of edge servers and
the erratic activities of multiple end-users pose challenges in
guaranteeing the quality of service (QoS). Therefore, there
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Fig. 1. An illustrating example.

are two key problems: (i) How to guarantee the QoS to
avoid service interruption with unknown trajectories when
users are away from the original edge servers? (ii) How to
realize service provisioning, and updating the services that can
efficiently utilize the limited resources without overwhelming
the cost constraint? In this paper, we investigate the service
provisioning and updating problem under the multiple-users
scenario by improving the performance of services with a
long-term cost constraint.

A. Motivation and Challenges

We illustrate the motivation and challenges of the online ser-
vice provisioning and updating problem by using an example
in Figure 1. The squares with six different colors represent the
services s1 to s6, which are initially provisioned in the cloud
data center. We assume that the services required by the users
have been deployed on the edge servers, and each service only
serves one user. For mobile users, the QoS can be guaranteed
through provisioning a replication or migration among edge
servers. (i) The trajectories of multiple users are diverse and
erratic, hence it is non-trivial to find an efficient strategy that
can improve the QoS of mobile users by considering the cost

247

2022 18th International Conference on Mobility, Sensing and Networking (MSN)

978-1-6654-6457-4/22/$31.00 ©2022 IEEE
DOI 10.1109/MSN57253.2022.00051

20
22

 1
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
ob

ili
ty

, S
en

sin
g 

an
d 

N
et

w
or

ki
ng

 (M
SN

) |
 9

78
-1

-6
65

4-
64

57
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
SN

57
25

3.
20

22
.0

00
51

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on August 17,2025 at 12:15:19 UTC from IEEE Xplore.  Restrictions apply. 



constraint. Taking service s3 as an example, we suppose that
end user u3 moves from an area in m1 to m4 at time slot t
and goes back to m1 after several slots. One extreme solution
is to migrate or provision a replication of s3 on edge server
m4 which may bring a lower delay for user u3. However,
the total cost will be the maximum one among all feasible
assignments if the replication or migration costs of services
are extremely high. Another extreme assignment is to retain
service s3 within m1, which minimizes the extra (replication
or migration) cost. When u3 moves to m4, the service can only
be enjoyed through communication with m1, which will make
the quality of service decrease. Therefore, when and where to
migrate or replicate services is crucial for balancing the trade-
off between long-term cost and users’ total delay. (ii). Since
the capabilities of edge servers are limited, determining which
services are chosen to be placed in order to obtain a better
performance when multiple users make the same decision at
the same time is non-trivial. Taking services s2 and s6 as an
example, we suppose that users u2 and u6 move from m1

towards m4 during the same time slot. If both services want
to migrate or replicate to m3, there will be a conflict due to the
fact that the remaining capacity can only receive one service.
Therefore, the problem of how to make a better choice by joint
considering the resource efficiency and users’ performance is
a challenge.

B. Contributions and Paper Organization

In this paper, we investigate the service provisioning and up-
dating problem under the multiple users scenario by improving
the performance of services with long-term cost constraints.
Our contributions can be summarized as follows:

• We investigate the service provisioning and updating
problem by formulating to minimize the average long-
term delay of multiple users, and we decouple the original
long-term optimization problem into a per-slot determin-
istic one by using Lyapunov optimization.

• We propose two service updating decision strategies by
considering the trajectory prediction conditions of users.
For one scenario, namely the service updating without
available predictive information, we propose a novel
strategy by introducing the conflict resolution factor. For
the other scenario, which is the service updating with
multi-step prediction, we optimize the total delay of
users per-slot by converting a weighted graph under the
constructed activity set.

• Based on that, we design an online strategy by utilizing
the committed horizon control method looking forward
to multiple slots predictions. We prove the performance
bound of our online strategy theoretically in terms of the
trade-off between delay and cost.

• We conduct extensive experiments to compare our strat-
egy with several baselines based on the Microsoft GPS
trajectory dataset which was reconstructed by 40 users.
The results are shown from different perspectives to
provide conclusions. Extensive experiments demonstrate
the superior performance of the proposed algorithm.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model
and then formulates the problem. Section IV investigates the
service provisioning and updating problem based on Lyapunov
optimization. Section V investigates the online optimization
provisioning strategy. Section V includes the experiments.
Finally, Section VI concludes the paper.

II. RELATED WORK

As an emerging paradigm, edge computing extends services
closer to end-users. However, the finite capabilities of edge
servers and the erratic activities of users pose new challenges
[5]. One of the main open branches is the service provisioning
problem, which is well-investigated in edge computing under
mobility scenarios [6]. Various works have been studied from
different aspects of this problem. Yu et al. [7] investigated
the service provisioning problem in mobile edge computing,
which aimed to minimize the traffic load caused by service
request forwarding, and proposed an efficient decentralized al-
gorithm based on the matching theory. Nezami et al. [8] formu-
lated a decentralized load-balancing problem for IoT service
provisioning, and they introduced a decentralized multi-agent
system that utilized edge servers to balance the workloads and
minimized the costs involved in service execution. Zhang et
al. [9] solved the computation and delay costs minimization
problem by proposing an efficiently approximate algorithm
based on semi-definite relaxation. The above works optimized
the service cost and delay from the offline scenario.

In the online scenario, Chen et al. [10] studied the service
collaboration with master-slave dependency among service
chains of mobile users and jointly optimized the cost and
delay by introducing a distributed algorithm based on Markov
approximation. Xu et al. [11] proposed an efficient online al-
gorithm based on Gibbs sampling which can achieve provable
close-to-optimal performance. Han et al. [12] transformed the
online multi-component service placement into an ant colony
optimization problem, and they proposed a level traversal
component ranking method to achieve faster convergence.
These works focus on optimizing the cost and delay of the
service provisioning problem, however, they ignore the erratic
movements of users.

In order to tackle the challenge of users’ mobility, some
existing works were proposed based on service migration.
Ning et al. [13] studied the service provisioning problem by
constructing a stochastic mobility system, and they introduced
a distributed Markov approximation algorithm which is linear
to the number of users in order to determine the services
provisioning configurations. Zeng et al. [14] formulated an
optimization problem to jointly decide the service provisioning
policy and the routing decision, and they developed an online
distributed algorithm with provable performance guarantees
in terms of convergence and competitive ratio. Li et al. [15]
focused on the service migration problem for mobile users
through modeling a Markov Decision Process (MDP) model,
and they solved it by using deep reinforcement learning. In
addition, some works consider using the information of the
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prediction. Liu et al. [16]. introduced a prediction-based dy-
namic task assignment algorithm that assigned the workloads
to edge servers based on the prediction of capacities and
costs in each time slot. Jin et al. [17] designed a set of
novel polynomial-time algorithms to make adaptive decisions
by solving continuous solutions. These continuous solutions
are based on the predicted inputs about the dynamic and
uncertain cloud-edge environments via online learning. Ma et
al. [18] propose a multiple slots predictive service placement
algorithm to incorporate the prediction of user mobility based
on a frame-based design. However, these works do not take
into account the impact of additional prediction error on the
service provisioning. In this paper, we study the online service
provisioning and updating problem in mobile edge computing.
Our objective is to improve the QoS by minimizing the total
delay while considering maintaining the long-term cost under
the constraint.

III. MODEL AND PROBLEM FORMULATION

1) System Model: As shown in Figure 1, we consider a
three layer network architecture that includes the cloud data
center, edge servers, and the mobile end-users. We suppose
that the services required by users are initially provisioning
in the cloud data center, which is denoted as set S = {sh}.
Let M = {mj} denote a substrate set of edge servers that
supported by the operators. Let U = {ui} denote the set of
mobile users, and these users subscribe to the services one-to-
one. In order to capture the mobility of users, we assume that
the system in a slotted structure and its timeline is discretized
into time frame t ∈ {0, 1, 2, ...T − 1} [18]–[20]. In this paper,
we suppose that users move erratically and frequently among
several edge servers. At each time slot, the operators determine
whether provisioning replications or migration follow with
users according to navigating the trade-off between delay and
cost.

2) QoS model: In our study, the QoS of users is determined
by computing delay, communication delay, and updating delay.
We use D(t) =

∑|U|
i=1 Dui

(t) to denote the total delay at
time slot t, where Dui

(t) is the delay of ui. The computing
delay is defined as Dc

ui
(t) =

∑
mj∈M

rui
(t)

zc
mj

, where rui
(t)

is the service request of user ui at time slot t, and zcmj
is

the computing capacity of mj measured by the number of
CPU cycles. We use Dl

ui
(t) to represent the communication

delay produced when users are far away from the location
of the service. Let tui,mj denote the maximum transmission
rate, where tui,mj (t) = bui,mj (t) · log2(1 +

β·g(ui,mj)
N )

[20], [21]. The communication delay is defined as Dl
ui
(t) =∑

mj∈M
dui

(t)

tui,mj
(t) , where dui

(t) denotes the data size of the
request [20], [21]. We use Du

ui
(t) to represent the updating

delay, which occurs when the location of service si that is
serving ui changes. Here, we consider two scenarios. One is
that the operator can place a replication on the edge server to
which ui is currently connected. The other is that operator
can migrate service si to the edge server to which user
ui goes forward. The costs of both scenarios are discussed

in the next subsection. The updating delay is defined as
Du

ui
(t) = Υ(vi)+Ψ(si), where Υ(si) is the delay of rebooting

software resources, and Ψ(si) is the delay of transmission
service profiles [22].

3) Cost Model: We use C(t) to denote the total cost of
users in set U at time slot t, where C(t) =

∑|S|
h=1 Csh(t).

Let Csh(t) denote the cost of service sh, where Csh(t) =
Cm

sh
(t) + Cr

sh
(t). We use Cm

sh
(t) and Cr

sh
(t) to represent the

migration cost and replication cost, respectively. Let xsh(t)
denote the decision of sh, when sh decides to stay at the edge
server same with the location in the previous step, xsh(t) = 0,
otherwise, xsh(t) = 1.

A. Problem Formulation

On the basis of the models above, our problem is formulated
to minimize the long-term average delay under the resource
and cost constraints, which is shown as follows:

P1 : minimize lim
T→∞

1

T

T−1∑
t=0

|U |∑
i=1

Dui(t) (1)

s.t. Dui
(t) = Dc

ui
(t) +Dl

ui
(t) + xsi(t) ·Du

ui
(t), (2)

lim
T→∞

1

T

T∑
t=0

|S|∑
h=1

Csh(t) ≤ Γ,Dui
(t) ≤ D,∀ui ∈ U, (3)∑

Smi
∈S

W (Smi
(t)) ≤ Rs

mi
,∀mi ∈M, (4)

xsh(t) ∈ {0, 1},∀sh ∈ S. (5)

P1 is the objective function, and equations (2) to (5) are the
constraints. Equation (2) is the total delay of each user, which
needs to be lower than D to ensure the QoS. Equation (3)
states that the long-term average cost cannot overwhelm the
threshold Γ. Equation (4) states the constraint on the resource,
which means the services placed on mi should be under the
limitation Rs

mi
. Equation (5) states the decision of sh which

provides service for uh at time slot t.

IV. SERVICE UPDATING DECISION STRATEGY BASED ON
LYAPUNOV OPTIMIZATION

A. Decoupling based on Lyapunov Optimization

In this subsection, we first decouple the original problem
into per-frame deterministic problems by applying the Lya-
punov optimization. In order to deal with the constraint on
average cost Γ in Equation (3), we introduce a virtual queue
Q(t) which denotes the historical measurement of the extra
cost of services at time slot t. The queue updates according
to

Q(t+ 1) = max{Q(t) + C(t)− Γ, 0} (6)
Intuitively, the condition of the total extra cost C(t) that

is produced by the replication or migration of services can
be evaluated by Q(t). When the value of Q(t) is large, it
represents that the cost has exceeded the long-term cost Γ.
Specifically, Equation (6) implies Q(t+1) ≥ Q(t)+C(t)−Γ,
and then we have C(t)−Γ ≤ Q(t+1)−Q(t). By summing this
inequality during all time slots, we have

∑T−1
t=0 (C(t)− Γ) ≤
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Q(T )−Q(0). Initialize Q(0) = 0 and divide by t time slots.
One can take expectations and derive that the expected backlog
over time slot in [0, T − 1] is less than the threshold.

1

T

T−1∑
t=0

E[C(t)] ≤ lim
T→∞

1

T
E[Q(T )] + Γ (7)

As shown in Equation 7, we have that the constraint on the
cost can be guaranteed by stabilizing the virtual queue Q(t).
Therefore, a quadratic Lyapunov function for each slot t is
defined as L(Q(t)) ≜ 1

2Q(t)2 [13], [18], [23], where Q(t)
is a vector that evolves over slots in [0, T − 1]. Here, the
quadratic Lyapunov function can be considered as a scalar
measure of queue deviation which is similar to Q(t). In order
to keep the queue stable, which means enforcing the extra cost
constraint by promoting the Lyapunov function to lower values
continuously, we introduce the one-step conditional Lyapunov
drift as follows.

∆(Q(t)) ≜ E[L(Q(t+ 1))− L(Q(t))|Q(t)] (8)
Lemma 1: Given the updating decisions of services in set

S according to multiple mobile users U in each time slot t,
the following statement holds:

∆(Q(t)) ≤ ß +Q(t)E[(C(t)− Γ)|Q(t)] (9)

, where ß ≜ 1
2 (C̃(t)

2 + Γ
2
).

Proof: We rearrange Equation (8) for a concise form, where
∆(Q(t)) ≜ E[L(Q(t + 1)) − L(Q(t))|Q(t)] = 1

2E[(C(t) −
Γ)2|Q(t)] + Q(t)E[(C(t) − Γ)|Q(t)]. For each service, we
use C̃sh(t) to denote the cost of updating the decision
of sh in set S by choosing the minimum delay of user
uh ∈ U at time slot t. Based on that, the total cost of all
services will be C̃(t) =

∑
sh∈S C̃sh(t). Since the division

of the time space taking into account the user’s mobility
on the boundary, the service provider will not change in
one time slot. Thus, we have C̃(t) ≥ C(t). Then, we have
∆(Q(t)) ≤ 1

2 (C̃(t) − Γ)2 + Q(t)E[(C(t) − Γ)|Q(t)] ≤
1
2 (C̃(t)

2 + Γ
2
) +Q(t)E[(C(t)− Γ)|Q(t)]. Therefore, we can

obtain that the one-step conditional Lyapunov drift holds
∆(Q(t)) ≤ ß + Q(t)E[(C(t) − Γ)|Q(t)] at each time slot t,
where ß ≜ 1

2 (C̃(t)
2 + Γ

2
). ■

According to the Lyapunov optimization framework, we
obtain the upper bound of the Lyapunov drift function by
introducing a Lyapunov drift-plus-penalty function in each
time slot t.

P (t) ≜ ∆(Q(t)) + V E[D(t)|Q(t)] (10)
Here, we define V as a non-negative parameter for adjusting

the trade-off between the extra cost queue and the delay. In
each time slot, the performance of the service provisioning
strategy is guaranteed by minimizing an upper bound of the
following function.
P (t) ≤ß +Q(t)E[(C(t)− Γ)|Q(t)] + V E[D(t)|Q(t)] (11)

Based on that, the service provisioning and updating problem
is formulated by minimizing the right side of Equation (11)
at each time slot, which is formulated as follows.

P2 : minimize ß +Q(t)(C(t)− Γ) + V D(t) (12)
s.t.(2)− (5). (13)

Algorithm 1 Updating Strategy with No Prediction (USNP)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X(t) of U at time slot t;

1: for users k = 1 to k = |U| in U do
2: Choose the updating decision by optimizing P2;
3: for edge servers i = 0 to i = |M| in M do
4: if

∑
Smi

∈S W (Smi
(t)) ≥ Rs

mi
then

5: Choose service by i = argmin{ηh};
6: end if
7: end for
8: end for
9: return Service updating decision X(t) of S;

B. Optimal Services Updating Decision Strategy

In this subsection, we propose a service updating decision
strategy by optimizing P2 under the constraints in each time
slot. We start with a definition as follows.

Definition 1 (Optimal Service Updating (OSU) Problem):
Given the distribution of users U, the topology of edge network
G, and the function Θ(t), an OSU problem is how to find a
decision for services in S to minimize P2 under the constraints
at time slot t.

On the basis of Definition 1, we discuss two scenarios. One
is the services updating without prediction, and the other is
the service updating with prediction.

1) OSU with no prediction: The first scenario we consid-
ered is the OSU problem without available information caused
by the inaccurate prediction results or in the initial or training
stages of mobile users in per-slot. The specific steps are shown
in Algorithm 1. We use the sets of edge servers M, users
U, and services S as the input. The output is the service
updating decision X(t) at time slot t. For each user in set
U, we choose the updating decision by optimizing P2 in lines
1 to 2. Then, we check the feasibility of services on edge
servers by checking whether

∑
Smi

∈S W (Smi
(t)) ≥ Rs

mi
.

Here, we use
∑

Smi
∈S W (Smi

(t)) to denote the total number
of services provisioning on mi. In order to avoid conflicts
caused by aggregation requests of multiple users, we introduce
a definition of the conflict resolution factor for the service, and
the specific definition is as follows.

Definition 2 (conflict resolution factor): Let ηh indi-
cate the conflict resolution factor of service sh and ηh =
Csh(t)/Dl

uh
(t), where Dl

uh
(t) = Dl

uh
(t)|sh /∈Smi

(t).
Here, we use Csh(t) to denote the total extra cost of service
sh when it migrates or replicates on edge server mi at time
slot t, where sh ∈ Smi

(t). In line 4, we choose a service
by an increasing order i = argmin{ηh}. Finally, the service
updating decision X(t) is returned in line 6.

2) OSU with prediction:
Lemma 2: The decision of the OSU problem can be solved

by minimizing Θ(t), where Θ(t) = Q(t)C(t) + V D(t).
Proof: We first rearrange P2 by introducing an intermediate
variable P, where P(t) = ß + Q(t)(C(t) − Γ) + V D(t) =
ß +Q(t)C(t)−Q(t)Γ + V D(t). The value of ß is related to
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the distribution of users in set U which is a constant value.
Meanwhile, the value of Q(t) depends on the decision of
services in the previous time interval [0, t− 1], which means
that the decision at time slot t has no effect on the value
of Q(t). We reconstruct P(t) as P(t) = W + Θ(t), where
W = ß+Q(t)−Γ and Θ(t) = Q(t)C(t)+V D(t). Therefore,
we can obtain that the network determines the service updating
strategies by solving the optimization of Θ(t) in each time slot.
■

Based on the conversion above, we rearrange Θ(t) by
considering the combinational decision-making where Θ(t) =

Q(t)
∑|S|

h=1 Csh(t) + V
∑|U |

i=1 Dui
(t). The value of the total

extra cost of service sh depends on the decision choosing to
migrate or place replications, i.e., Csh(t) = Cm

sh
(t) + Cr

sh
(t),

which will affect the result of the delay. Taking the decision
of sh as an example, if service sh decides to migrate or place
replications on other edge servers, it will produce a migration
cost Cm

sh
(t) or replication cost Cr

sh
(t). Meanwhile, the com-

munication part of Dl
ui
(t) will decrease while the updating

part of Du
ui
(t) will increase for Dui

(t). We reconstruct Θ(t) on
the basis of the interaction based on the relationship between
services and users, where Θ(t) =

∑|S|
h=1 Θh(t). For each

service, we have Θh(t) = Q(t)Csh(t)+ (Dl
uh

+Du
uh
)+Dc

uh
.

Based on that, we use d(sh,mi) to represent the weight
between service sh and edge server mi at time slot t, where
d(sh,mi)(t) = Q(t)Csh(t). We suppose that dmi(x) is the
delay function. We replace in G◦ each edge with |Û(t)| parallel
edges between the same server mi and the destination t, and
each with weight dmi

(x)|ux∈Û(t). Then, the weight between
edge server mi and the destination t that is connected to
it is dmi(x) = (Dl

ux
+ Du

ux
) + Dc

ux
. Therefore, we have

Θh(t) = d(sh,mi)(t) + dmi
(x)(t).

On the basis of the interaction, we propose a novel Updating
Strategy with no Prediction (USNP) to optimize the provision-
ing strategy at each time slot, which is shown in Algorithm 2.
We first construct a weighted graph by considering the infor-
mation and connection between services and edge servers. We
add two virtual nodes which are source s and destination t,
and the middle two layers are services and storage resources
of edge servers. The original connectivity graph is shown in
Figure 2(a). We use thick red lines to mark services where
their users are far away from the original locations, and thick
yellow lines to mark edge servers with remaining resources.
In each time slot, the activities of users are independent. This

Algorithm 2 Updating Strategy with Prediction (USP)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X(t) of S at time slot t;

1: Construct the original connectivity graph g based on the
provisioning of S, the connections of G, and U;

2: for users i = 1 to i = |U| in U do
3: Calculate ςui

(t) = (Lui
(t− 1), Lui

(t));
4: if ςui

(t)==1 then
5: Construct the activity set with Û(t)← ui;
6: Update user set at time slot t with U(t) = U(t)/ui;
7: else
8: Update U(t)← ui;
9: end if

10: end for
11: Construct the extracted connectivity graph G◦ based on

the activity set Û(t);
12: Replace the link with |Û(t)| parallel ones with weight

dmi
(x)|ux∈Û(t);

13: Find a feasible service updating decision with min-cost
flow of Û(t);

14: return Service updating decision X(t) of services S;

means that the locations of some users may be remaining in
their original locations, while some may be far away from the
connected edge servers. For the users whose locations are not
changing, the corresponding service will not be migrated or
placed by a replica, so there is no extra cost or delay produced.
Therefore, we consider optimizing the provisioning of services
by constructing an activity set Û(t) to reduce the dimensional
space. The formal definition is given as follows.

Definition 3 (Activity Set): Let Û(t) indicate the activity
set of users at time slot t, where ui ∈ Û(t) is the user whose
current location Lui(t) is going far away from the edge server
for initial connection Lui(t− 1).
Here, we use Lui(t) to denote the edge server that user ui

becomes connected to at time slot t. Since one user can only
be served by one service, the numbers between users and
services are equal. Based on that, we do an extraction by
considering the current status of users and the topology of the
edge network. The extracted connectivity graph is shown in
Figure 2(b). We use the white circle to indicate that a container
on the edge server has been occupied while a yellow one
indicates a free storage resource on the edge server.

The specific steps are shown in Algorithm 2. We use the sets
of M, U, and S as the inputs. The service updating decision
X(t) of S at time slot t is used as the output. We construct
the original connectivity graph g based on the provisioning of
S, the connections of G, and U in line 1. In line 2, we start
to construct the activity set Û(t). We first check the locations
of users in set U, where ςui

(t) = (Lui
(t− 1), Lui

(t)) in line
3. If ςui

(t) = 1, this denotes that ui has gone away from the
edge server at time slot t− 1. Then, we construct the activity
set by adding ui into set Û(t), where Û(t)← ui; Otherwise,
it denotes that ui always stays near the edge server from t−1
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to t, and we update U(t) ← ui. Based on this, we start to
construct the extracted connectivity graph G◦ based on the
activity set Û(t) in line 9. In line 10, we replace the link
with |Û(t)| parallel ones with weight dmi

(x)|ux∈Û(t) between
edge servers and destination t. Then, we find a feasible service
updating decision with min-cost flow of Û(t) and return the
updating decision X(t) of services S in line 12.

V. ONLINE OPTIMIZATION OF SERVICE PROVISIONING
STRATEGY

In this section, we design an Online Optimization of Service
Provisioning Strategy (O-OSPω) by utilizing the committed
horizon control method with ω steps prediction. The main
idea of O-OSPω is to leverage the prediction model to look
forward the trajectories of users in multiple steps and use the
information to realize the service provisioning. The specific
steps are shown in Algorithm 3. We suppose that the infor-
mation of the chosen prediction model in the first τ steps
is unavailable. Thus, we get service updating decision X(t)
using Algorithm 1 in line 2. After that, we obtain the service
updating decision X(t) using Algorithm 2 based on L̂U|[t,t+ω]

in line 4. Here, L̂ui|[τ,τ+ω] is the trajectory of user ui in
a ω time steps prediction window starting at time τ , where
L̂ui|[τ,τ+ω] = {L̂ui(τ), L̂ui(τ + 1), ..., L̂ui(τ + ω)}. In line
5, we set t̃ = (t − τ) mod ω, and we check whether the
prediction steps are less than ω. In lines 9 to 13, we update the
service provisioning for services by introducing a novel factor
feasible decision frequency. We use ash(t) = xsh(t) ·ysh(t) to
represent the decision value of sh, where ysh(t) ∈ {−1, 1} and
xsh(t) ∈ {0, 1} shown in equation (5). Since xsh(t) = 0 when
service sh decides to stay at the original location, the decision
value will be ash(t) = 0. On the contrary, when service sh
makes a decision on migration, ysh(t) = −1 and xsh(t) = 1,
and then the value of ash(t) = −1. Similarly, when service sh
makes a decision on replication, ysh(t) = 1 and xsh(t) = 1,
and then the value of ash(t) = 1. Based on that, we use a
queue A

(x)
sh to record the decision values of service sh in x

time steps, i.e., A(ω)
sh = {ash(t+1), ash(t+2), ..., ash(t+ω)}.

Definition 4 (feasible decision frequency): Let ϱa
◦

sh|ω(t)
indicate the feasible decision frequency of sh under the value
a◦, where ϱa

◦

sh|ω(t) =
1
ω

∑x=ω−1
x=0 f(A

(x)
sh , a◦).

Here, f(A(x)
sh , a◦) is a function to indicate whether the result

in queue A
(x)
sh is equal to a◦, i.e., ash = a◦.

Theorem 1: By applying OSP, the time-average system
delay satisfies: 1

T

∑t=T−1
t=0 D(t) ≤ 1

2 (OPT + ß + V |U|D) +
ϵ+ 1

ωW · α · T .
Proof: We conduct the proof via introducing POSP (t), where
POSP (t) = ß + Q(t)(C(t) − Γ) + V D(t) under the OSP
strategy. For each time slot, we use P(t) to represent the
decision policy with random frequency. We use δ(t) to denote
the prediction error at time slot t. Then, we have the average
value 1

ω

∑t+ω
t+1 b(t) ≤ 1

ω · ω · ϵ = ϵ. Thus, we have

POSP (t) ≤
1

ω

t+ω∑
t+1

P(t) ≤ OPT + 2ϵ+
2

ω
W · α · T, (14)

Algorithm 3 Online Optimization of Service Provisioning
strategy (O-OSPω)
Input: Sets of edge servers M, users U, and services S;
Output: Service updating decision X of S in each time slot;

1: for t = 0 to t = τ do
2: Get service updating decision X(t) using Algorithm 1;
3: end for
4: for t = τ to t = T − 1 do
5: Get service updating decision X(t) using Algorithm 2

based on L̂U|[t,t+ω];
6: Set t̃ = (t− τ) mod ω;
7: if t̃ = t− τ then
8: Set X(t) = X(t̃);
9: else

10: for service h = 1 to h = |S| do
11: Updating the decision value of sh into A

(ω)
sh ;

12: Calculate the decision policy frequencies;
13: Set Xsh(t̃) = argmax

a◦∈A
(ω)
sh

{ϱa◦

sh|ω};
14: end for
15: Set X(t) = {Xsh(t̃)|sh∈S};
16: end if
17: end for
18: return Service updating decision X(t) of S(t);

which can be obtained in [24]. Here, W =
maxmi∈M{W (Smi

(t))}, which denotes the maximum
available storage resource of edge servers. Since each
server needs to make decisions for the services that are
placed on it, there exists a stationary and randomized
policy π for P2 that satisfy E[C − Γ] ≤ δ. Thus, we have
POSP (t) ≤ ß +Q(t) · δ+ V D(t). By letting δ go to zero, we
have POSP (t) ≤ ß + V D(t).

POSP (t) ≤ ß + V D(t) ≤ ß + V |U|D. (15)

We sum the inequality Equations (14) and (15), we have

POSP (t) ≤
1

2
(OPT + ß + V |U|D) + ϵ+

1

ω
W · α · T. (16)

■
VI. EXPERIMENTS

A. Basic Setting

We build our prototype on a workstation that runs a Linux
operating system with E5-2620 CPU, NVIDIA RTX5000
GPU, 128Gb memory, and a 2Tb hard disk. We choose the
Social-LSTM model to predict the future trajectories of users
which can achieve an average accuracy of over 70%. We used
the published Microsoft GPS trajectory dataset which has been
collected in the Geolife project [25], [26]. Since this dataset
recorded 182 users’ outdoor trajectories in a broad range, we
process it according to the features of users’ activities. We
first observed the activity tracks of 182 users and marked
the longitude and latitude of the origin center coordinates
[116.327544, 39.987317]. Then, we take this location as the
central point and divide the area by a radius of 2.5 kilometers.
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Fig. 3. Users distribution at different time slots.
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Fig. 4. Average total delay under different strategies.
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Fig. 5. Average total delay with different ω.

We traverse user trajectories to find the ones within this range
of area during 60 consecutive time slots. Based on that, 40
users were selected to construct our dataset U. The distribution
of users in different time slots is shown in Figure 3, which
includes the initial locations in time slots 0, 20, 40, and 59
in Figures 3(a), (b), (c), and (c). We found that the location
of users varies in different time slots, however, the number of
connected users will remain at a high level for edge servers
with a high frequency of utility. Based on that, we simulate
the edge computing network based on U, and we set up
49 edge servers with the service range of 450 meters. We
set the computing capacity of each server to range from
2GHz to 5GHz, and the data size of each service is 1GB.
The storage of each edge server ranges from 5GB to 10GB,
which also denotes the number of services that can be placed
on edge servers. Compared with the proposed online service
provisioning strategy, three baselines are used.

• USNP-only: Services provisioning and updating without
using the prediction information, and the decisions are
only made by USNP.

• USP-only: Services provisioning and updating by using
the prediction information, and the decisions are only
made by USP.

• O-OSP: Online services provisioning and updating based
on O-OSPω without considering ω steps prediction.

B. Experiment Results

1) Average total delay under different strategies: We inves-
tigate the average total delay under these four strategies with
three groups of users in a 60 timescale. The results are shown
in Figure 4. In addition, we have the following observations. (i)
The numbers and trajectories of users in set U affect the results
of strategies. As shown in Figures 4(b), (c), and (d), O-OSPω

has the lowest average total delays under the groups of 20, 30,
and 40. Meanwhile, the average total delay decreases notably
with the increasing number of users. However, as shown in
Figure 4(a), USNP-only obtains the lowest delay in the group
with 10 users. On the one hand, there are abundant resources
when there are fewer users which leads to deviation in the
decision-making under the prediction trajectory. On the other
hand, we found that the trajectories for the selected 10 users
in group one hardly changed which results in errors in the
algorithms using the prediction information. (ii) Prediction
with ω slots in O-OSPω can effectively reduce the problem
of service quality degradation caused by erratic activities of
mobile users. As shown in Figure 4(d), the average total delay
of O-OSP becomes significantly higher than that of the other
algorithms. In this case, besides the lowest average total delay
of O-OSPω , USNP-only and UPS-only can also achieve better
performances. The reason is that the increase in delay is due
to the scaling of users under limited resources. Especially in
the case of the trajectories of users changing frequently, it may
be inappropriate to determine the location of the service only
by one step, which will affect the delay of other users.

2) Average total delay with different ω time slots: Based on
the compared results above, we study the average total delay
of O-OSPω with different predictive ω slots. We predict the
trajectories of users using the Social-LSTM model in multiple
groups, and we choose two groups with 71.7% and 56.6%
percent accuracy for the comparative experiments. The results
are shown in Figure 5. Additionally, we have the following
observations. (i) The value of ω can influence the efficiency
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of O-OSPω . As shown in Figures 5(a) and 5(b), when the ω
steps range from 1 to 9, the average total delay of users keeps
decreasing. For each group, we can see that there is an obvious
change between ω = 2 and ω = 3. However, when the slots
scale into ω = 9 and ω = 10, the average total delay does not
change obviously. The reason for this is that the prediction
of users’ trajectories too far ahead of their movements may
cause inaccurate results which may lead to invalid decisions.
Therefore, the total average delay under the O-OSPω strategy
decreases in a range with the increasing value of ω, and the
setting of ω is related to the characteristics of users and the
prediction model. (ii) The accuracy of the chosen prediction
model has little effect on the results of O-OSPω . As shown in
Figure 5(a), the average total delay under ω = 1 is different
between these two groups. The group with higher accuracy
obtains a lower delay compared to the other group. However,
the gap between these two groups became narrower with the
increase of ω. As shown in Figure 5(a), the average total delay
under ω = 6 in a group with 56.6% is basically the same.
Therefore, we have that even if the accuracy of the prediction
model is imprecise, O-OSPω still can obtain a better result.

VII. CONCLUSION

In this paper, we investigate the service provisioning and up-
dating problem under the multiple-users scenario by improving
the performance of services with the long-term cost constraint.
We first decouple the original long-term optimization problem
into a per-slot deterministic one by using Lyapunov optimiza-
tion. Based on that, we propose two service updating decision
strategies by considering the trajectory prediction conditions
of users. Based on this, we design an online strategy by
utilizing the committed horizon control method while looking
ahead to ω slots predictions. We prove the performance bound
of our online strategy theoretically in terms of the trade-
off between delay and cost. Finally, we conduct extensive
experiments based on the Microsoft GPS trajectory dataset,
and we demonstrate the superior performance of the proposed
algorithm.

REFERENCES

[1] Tu, S., Waqas, M., Rehman, S. U., Mir, T., Halim, Z., & Ahmad,
I. (2021). “Social phenomena and fog computing networks: A novel
perspective for future networks,” IEEE Transactions on Computational
Social Systems, 9(1), 32-44.

[2] Waqas, M., Tu, S., Halim, Z., Rehman, S. U., Abbas, G., & Abbas, Z.
H. (2022). “The role of artificial intelligence and machine learning in
wireless networks security: principle, practice and challenges. Artificial
Intelligence Review,” 1-47.

[3] Dang, T. K., Mohan, N., Corneo, L., Zavodovski, A., Ott, J., &
Kangasharju, J. (2021). ”Cloudy with a chance of short RTTs: analyzing
cloud connectivity in the internet.” In Proceedings of the 21st ACM
Internet Measurement Conference, pp. 62-79.

[4] Chen, Y., Wu, J., & Ji, B. (2018, September). “Virtual network function
deployment in tree-structured networks,” In 2018 IEEE 26th Interna-
tional Conference on Network Protocols (ICNP) (pp. 132-142). IEEE.

[5] Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021).
“A survey on mobile augmented reality with 5G mobile edge computing:
architectures, applications, and technical aspects,” IEEE Communica-
tions Surveys & Tutorials, 23(2), 1160-1192.

[6] Salaht, F. A., Desprez, F., & Lebre, A. (2020). “An overview of
service placement problem in fog and edge computing. ACM Computing
Surveys (CSUR),” 53(3), 1-35.

[7] Yu, N., Xie, Q., Wang, Q., Du, H., Huang, H., & Jia, X. (2018,
December). “Collaborative service placement for mobile edge comput-
ing applications,” In 2018 IEEE Global Communications Conference
(GLOBECOM) (pp. 1-6). IEEE.

[8] Nezami, Z., Zamanifar, K., Djemame, K., & Pournaras, E. (2021).
“Decentralized edge-to-cloud load balancing: Service placement for the
Internet of Things,” IEEE Access, 9, 64983-65000.

[9] Zhang, G., Zhang, S., Zhang, W., Shen, Z., & Wang, L. (2021).
“Joint service caching, computation offloading and resource allocation
in mobile edge computing systems,” IEEE Transactions on Wireless
Communications, 20(8), 5288-5300.

[10] Chen, H., Deng, S., Zhu, H., Zhao, H., Jiang, R., Dustdar, S., & Zomaya,
A. Y. (2022). “Mobility-Aware Offloading and Resource Allocation for
Distributed Services Collaboration,” IEEE Transactions on Parallel and
Distributed Systems, 33(10), 2428-2443.

[11] Xu, J., Chen, L., & Zhou, P. (2018, April). “Joint service caching and
task offloading for mobile edge computing in dense networks,” In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications (pp.
207-215). IEEE.

[12] Han, P., Liu, Y., & Guo, L. (2021). “Interference-aware online multicom-
ponent service placement in edge cloud networks and its ai application,”
IEEE Internet of Things Journal, 8(13), 10557-10572.

[13] Ning, Z., Dong, P., Wang, X., Wang, S., Hu, X., Guo, S., ... & Kwok, R.
Y. (2020). “Distributed and dynamic service placement in pervasive edge
computing networks,” IEEE Transactions on Parallel and Distributed
Systems, 32(6), 1277-1292.

[14] Zeng, Y., Huang, Y., Liu, Z., & Yang, Y. (2020, June). “Online
Distributed Edge Caching for Mobile Data Offloading in 5G Networks,”
In 2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS) (pp. 1-10). IEEE.

[15] Li, Z., Jiang, C., & Lu, J. (2021, December). “Distributed Service
Migration in Satellite Mobile Edge Computing,” In 2021 IEEE Global
Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

[16] Liu, E., Deng, X., Cao, Z., & Zhang, H. (2018, December). “Design
and evaluation of a prediction-based dynamic edge computing system,”
In 2018 IEEE Global Communications Conference (GLOBECOM) (pp.
1-6). IEEE.

[17] Jin, Y., Jiao, L., Qian, Z., Zhang, S., & Lu, S. (2021, May). “Learning
for learning: predictive online control of federated learning with edge
provisioning,” In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications (pp. 1-10). IEEE.

[18] Ma, H., Zhou, Z., & Chen, X. (2020). “Leveraging the power of
prediction: Predictive service placement for latency-sensitive mobile
edge computing,” IEEE Transactions on Wireless Communications,
19(10), 6454-6468.

[19] Ouyang, T., Zhou, Z., & Chen, X. (2018). “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge computing,”
IEEE Journal on Selected Areas in Communications, 36(10), 2333-2345.

[20] Lu, S., Wu, J., Shi, J., Lu, P., Fang, J., & Liu, H. (2022). “A Dynamic
Service Placement Based on Deep Reinforcement Learning in Mobile
Edge Computing,” Network, 2(1), 106-122.

[21] Taleb, T., Ksentini, A., & Frangoudis, P. A. (2016). “Follow-me cloud:
When cloud services follow mobile users,” IEEE Transactions on Cloud
Computing, 7(2), 369-382.

[22] Gao, B., Zhou, Z., Liu, F., & Xu, F. (2019, April). “Winning at
the starting line: Joint network selection and service placement for
mobile edge computing,” In IEEE INFOCOM 2019-IEEE conference
on computer communications (pp. 1459-1467). IEEE.

[23] Neely, M. J. (2010). “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on Com-
munication Networks, 3(1), 1-211.

[24] Comden, J., Yao, S., Chen, N., Xing, H., & Liu, Z. (2019). “Online
optimization in cloud resource provisioning: Predictions, regrets, and
algorithms,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 3(1), 1-30.

[25] Zheng, Y., Li, Q., Chen, Y., Xie, X., & Ma, W. Y. (2008, September).
“Understanding mobility based on GPS data,” In Proceedings of the 10th
international conference on Ubiquitous computing (pp. 312-321).

[26] Zheng, Y., Zhang, L., Xie, X., & Ma, W. Y. (2009, April). “Mining
interesting locations and travel sequences from GPS trajectories,” In
Proceedings of the 18th international conference on World wide web
(pp. 791-800).

254

Authorized licensed use limited to: BEIJING UNIVERSITY OF TECHNOLOGY. Downloaded on August 17,2025 at 12:15:19 UTC from IEEE Xplore.  Restrictions apply. 


