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Abstract: In recent years, biometric radar has gained increasing attention in the field of non-touch
vital sign monitoring due to its high accuracy and strong ability to detect fine-grained movements.
However, most current research on biometric radar can only achieve heart rate or respiration rate
monitoring in static environments, which have strict monitoring requirements and single monitoring
parameters. Moreover, most studies have not applied the collected data despite their significant
potential for applications. In this paper, we introduce a non-touch motion-robust vital sign monitoring
system via ultra-wideband (UWB) radar based on deep learning. Nmr-VSM not only enables multi-
dimensional vital sign monitoring under human motion environments but also implements cardiac
anomaly detection. The design of Nmr-VSM includes three key components. Firstly, we design a UWB
radar that can perform multi-dimensional vital sign monitoring, including heart rate, respiratory
rate, distance, and motion status. Secondly, we collect real experimental data and analyze the impact
of eight factors, such as motion status and distance, on heart rate monitoring. We then propose a
deep neural network (DNN)-based heart rate data correction model that achieves high robustness
in motion environments. Finally, we model the heart rate variability (HRV) of the human body
and propose a convolutional neural network (CNN)-based anomaly detection model that achieves
low-latency detection of heart diseases, such as ventricular tachycardia and ventricular fibrillation.
Experimental results in a real environment demonstrate that Nmr-VSM can not only accurately
monitor heart rate but also achieve anomaly detection with low latency.

Keywords: non-touch vital sign monitoring; ultra-wideband (UWB) radar; multi-dimensional vital
sign; heart rate data correction; anomaly detection

1. Introduction

Vital sign monitoring system refers to a system that can detect important indicators of
physiological health, such as heart rate, respiratory rate, blood pressure, body temperature,
and more. These vital signs are crucial indicators of the body’s physiological state and are
of significant importance in disease prevention, diagnosis, and treatment.

A vital sign monitoring system can broadly be divided into two categories: touch
vital sign monitoring system and non-touch vital sign monitoring system. Touch vital sign
monitoring system refers to a system that requires sensors to come in contact with the
human body to detect vital signs, such as electrocardiogram monitors, smart bracelets, and
heart rate monitors. On the other hand, non-touch vital sign monitoring system refers to a
system that can detect vital signs without direct sensor contact with the human body, such
as UWB radar and infrared thermometers.

1.1. Motivation and Challenges

A vital sign monitoring system is primarily utilized to monitor crucial physiological
indicators reflecting the body’s condition, such as heart rate and respiratory rate. By moni-
toring these physiological indicators, we can obtain insight into a person’s physiological

Micromachines 2023, 14, 1479. https://doi.org/10.3390/mi14071479 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14071479
https://doi.org/10.3390/mi14071479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9850-2196
https://orcid.org/0009-0004-5363-1102
https://orcid.org/0000-0002-4542-8727
https://doi.org/10.3390/mi14071479
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14071479?type=check_update&version=1


Micromachines 2023, 14, 1479 2 of 18

condition, which can serve as a basis for disease diagnosis, ultimately achieving the goal of
improving quality of life and health levels. Currently, touch system is the most common
option, which offers strong real-time performance and high accuracy; however, its applica-
tion is limited due to its need for sensors to come into contact with the body. First of all, the
use of a touch system might result in a negative subject experience and possibly atypical
physiological or psychological reactions, which can contribute to measurement mistakes.
Second, employing a touch system can be extremely uncomfortable for the subject in some
unique circumstances, such as monitoring vital signs in patients with severe burn injuries,
and the detection accuracy may suffer as a result of the subject’s lack of skin tissue [1]. As a
result, a non-touch system has emerged as an alternative option.

From a technical point of view, a non-touch system can be based on technologies such
as RFID [2], capacitively coupled electrocardiogram [3], speech signals, video imaging,
thermal imaging, and biometric radar [4]. Among these, a biometric-radar-based non-touch
system has been a recent research focus due to its relatively higher monitoring accuracy
and lower costs.

A non-touch vital sign monitoring system based on biometric radar has addressed
the pain points of a touch system and has been applied to a certain extent in real life [5].
However, there still exist a number of issues with biometric radar. First, little study has been
completed on variables like human motion and distance in current biometric radar research,
which mostly focuses on heart rate and respiration rate detection. Second, biometric radar
relies on radio waves for monitoring, which makes it susceptible to interference and having
poor stability. Therefore, most current research on biometric radar requires the subject to
remain motionless. Third, the majority of biometric radars can only monitor vital signs
without applying the collected data. These vital sign data actually have a wide range
of applications.

In order to address the issues with a non-touch system based on the biometric radar
mentioned above, we propose a non-touch motion-robust vital sign monitoring system,
Nmr-VSM, which leverages UWB radar to detect multi-dimensional vital sign data, such as
heart rate, breathing rate, and human motion. Moreover, we take heart rate monitoring as
an example, analyze the real experimental data, and subsequently propose a novel data
correction model based on DNN to correct the heart rate data measured by the radar in
a motion environment. Finally, we model the heart rate variability (HRV) and propose a
CNN-based cardiac anomaly detection model to detect heart diseases.

1.2. Contributions and Paper Organization

We introduce a non-touch motion-robust vital sign monitoring system via UWB radar
based on deep learning, Nmr-VSM, which addresses common issues currently existing in
biometric radar systems, such as limited monitoring parameters, susceptibility to interfer-
ence, and poor robustness.

We highlight our main contributions as follows:

• We design a UWB radar that can not only monitor human heart rate and respiratory
rate in real time but also capture parameters such as human motion status and distance
in real time, achieving the monitoring of multi-dimensional vital signs.

• We take the radar’s heart rate monitoring as an example, collect data through real
experiments, and subsequently analyze the impact of human motion status on the
accuracy of heart rate monitoring. At the same time, we combine variables such as
angle, distance, direction, and the subject’s gender, weight, height, etc., and propose a
DNN-based heart rate data correction model, which improves the robustness of the
system in motion environments.

• We model the HRV of the human body and propose a CNN-based cardiac anomaly
detection model. Additionally, we propose a metric, the latency value k, to evaluate
the performance of this model. Verification results demonstrate that this model
achieves low-latency detection of heart diseases such as ventricular tachycardia and
ventricular fibrillation.
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• We conduct experiments in a real environment and the results show that, after correct-
ing the heart rate detected by UWB radar, mean absolute error (MAE), mean squared
error (MSE), and mean relative error (MRE), compared with before correction, all at
least decreased by more than 85%, and the heart rate change trend after correction
is more consistent with the real heart rate change trend. In addition, our designed
anomaly detection model achieves a high detection success rate with low latency.

The remainder of this paper is organized as follows. Section 2 surveys related works.
Section 3 sequentially describes the UWB radar, the data correction model, and the anomaly
detection model. Section 4 presents the experiments. Finally, Section 5 concludes the paper.

2. Related Work

In this section, we introduce the UWB radar technology, and then summarize the key
research in the field of vital sign monitoring.

2.1. UWB Radar

UWB radar has been used in fields such as robot navigation [6], indoor positioning [7],
map construction [8], etc. The latest research also shows that UWB radar can be applied to
autonomous driving [9,10] and human identification [11,12]. All these studies demonstrate
the feasibility of applying UWB radar to the field of vital sign monitoring. Along this
direction, this paper will leverage UWB radar to achieve non-touch vital sign monitoring.

2.2. Vital Sign Monitoring

Some studies use touch technologies for vital sign monitoring, such as [13] based
on PPG (photoplethysmography) technology, using smart bracelets to monitor human
heart rate and motion, and designed a sleep staging model, but this touch monitoring
method may provide users an uncomfortable experience, resulting in abnormal monitoring
results. Some other studies [14] based on ECG (electrocardiogram) technology achieved
medical-grade electrocardiogram monitoring. However, ECG must use electrodes to touch
the human body, so this technology will also provide users an uncomfortable experience.
Not only that, the conductive gel used by ECG electrodes may cause allergic reactions in
users, and non-medical ECG electrodes are prone to problems, such as displacement or
detachment. Most importantly, ECG technology is not suitable for specific populations,
such as infants and large-area burn patients.

In order to solve the problems of a touch system and improve user experience, some
studies have started to use speech signals, video imaging, WiFi and biometric radar, and
other technologies to achieve non-touch vital sign monitoring.

The research of Mesleh A and Skopin D. et al. [15] pointed out that the human heart
activity is dynamically correlated with changes in vocal cord parameters, so it is feasible to
detect heart rate by extracting appropriate frequency features from human voice signals.
They showed the study of vowel voice signals in [15], and the experimental results showed
that the average error rate of heart rate detection in this study was 5%. However, when the
subject’s vital capacity is insufficient, the detection result of this technique is not satisfactory
because the subject’s tone change in the process of speaking is usually very large when the
vital capacity is insufficient.

Poh M. Z. et al. [16,17] used a laptop’s camera to achieve non-touch vital sign detection
based on video detection. The principle of this technology is that, when ambient light shines
on the surface of human skin, the blood volume in the skin will show pulsatile changes
with the heartbeat, resulting in skin color changes. By analyzing these color changes, the
heart rate can be obtained. However, this technology is very limited by ambient light and
can only perform better detection under suitable lighting conditions, and this technology is
also very susceptible to motion artefact.

F. Zhang et al. [18] and C. Wu et al. [19] successfully utilized WiFi to achieve human
respiratory rate detection; the principle of this technology is detecting chest rise and fall
caused by breathing through WiFi signals. However, the current WiFi system’s carrier
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frequency is usually 2.4 GHz or 5 GHz, which results in a relatively low spatial resolution.
Moreover, the narrow bandwidth characteristic of a WiFi system makes its distance resolu-
tion low. However, the largest challenge is that, due to the extremely low signal-to-noise
ratio of the heartbeat signal, it is difficult for a WiFi system to accurately detect human
heartbeats [20].

The basic principle of utilizing biological radar to detect vital signs is similar to WiFi.
However, compared to WiFi, radar can have higher carrier frequency and bandwidth, and
also a stronger ability to detect weak motion. Therefore, biological radar can not only
detect human respiration more accurately but also the human heartbeat. For example,
D. Obeid et al. [21] utilized millimeter waves to achieve non-touch heart rate monitoring
and heart rate variability extraction, and Y. Lee et al. [22] utilized UWB radar to achieve
the same function. Despite the promising results achieved by both studies, due to the
physical principles involved in measuring heart rate using biological radar, the subjects
in these studies were required to remain still during measurements. Any motion would
result in motion artifacts [23] that significantly affect measurement accuracy. To address
this problem, the study [24] improved the sensitivity of motion artefacts to some extent by
using multiple antennas.

Different from the above studies, this paper designs a non-touch motion-robust vital
sign monitoring system via UWB radar based on deep learning, Nmr-VSM, which sup-
ports heart rate data correction in motion environments without using multiple antennas,
reducing the cost. Moreover, we also design an anomaly detection model to better perform
health monitoring.

3. System Design
3.1. Preliminary

Physiological background. Human respiration is accomplished by the periodic ex-
pansion and contraction of the diaphragm and chest muscles; similarly, human heartbeat
is accomplished by the periodic expansion and contraction of the heart. Therefore, both
human respiration and heartbeat activity cause a certain degree of chest rise and fall. Gen-
erally speaking, the frequency and amplitude of this chest rise and fall are as shown in
Table 1.

Table 1. Frequency and amplitude of chest rise and fall caused by respiration and heartbeat.

Category Frequency (HZ) Amplitude (mm)

respiration 0.1–0.3 4–12
heartbeat 1–2 0.2–0.5

Electromagnetic background. UWB radar emits radar signals towards the subject,
which are reflected by the surface of the chest, thereby forming an echo signal. At this
point, the chest rise and fall caused by breathing and heartbeat will affect the phase of the
echo signal; this phenomenon is called phase modulation. Assuming that the amplitude of
the chest rise and fall of the subject is x(∆t), phase modulation θ(∆t) can be expressed as:

θ(∆t) =
4πx(∆t)

λ
(1)

where ∆t represents the time from emitting the radar signal to receiving the echo signal,
in seconds. λ represents the wavelength of the emitted radar signal, in meters.

According to Equation (1), the amplitude x(∆t) of the human chest rise and fall is
proportional to the phase modulation θ(∆t) of the signal. Therefore, theoretically, as long
as an appropriate signal processing method is used to obtain θ(∆t), x(∆t) can be obtained,
and then information such as the subject’s heart rate and respiration rate can be obtained
from it.
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3.2. System Overview

We designed a non-touch vital sign monitoring system, Nmr-VSM, which leverages
UWB radar to achieve multi-dimensional vital sign monitoring, such as heart rate and
respiration rate. The system architecture is shown in Figure 1. The whole system consists
of a radar module, data correction, anomaly detection, and demonstration.
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Figure 1. An overview of the Nmr-VSM’s architecture.

3.3. Radar Module

Nmr-VSM first preprocesses the echo signal in a computing chip that is in the radar
module to detect heart rate, respiratory rate, motion status, and distance. Then, these vital
sign data are uploaded to an ECS (Elastic Cloud Server) via WiFi.

UWB radar. UWB is a wireless carrier communication technology that utilizes narrow-
pulse non-sinusoidal waves with sub-nanosecond durations to transmit data. Operating
within the frequency range of 6.5–8.1 GHz, UWB has a transmission bandwidth of over
500 MHz. Additionally, UWB radar has an extremely short transmission duration while
the transmitter-receiver cycle time is relatively long, resulting in extremely low power
consumption per unit time, typically below 5 dBm.

Nmr-VSM leverages UWB pulse radar to detect the chest rise and fall caused by
respiration and heartbeat, which consists of a radio frequency antenna, a radar chip,
and a microcontroller unit. Specifically, the radar emits electromagnetic pulse signal
towards the human body. Then, the radar uses the receiving antenna to receive the signal
whose frequency and phase have been changed, which is the echo signal carrying vital
sign information.

Echo signal preprocessing. In order to extract vital sign information from the echo
signals, a computing chip in the radar module will preprocess the signals to obtain vital
sign data. Specifically, due to the periodic expansion and contraction of the chest caused
by heartbeat and breathing, the distance d(t) between the chest surface and the radar
varies periodically around a baseline distance d0. This periodic variation of d(t) can be
modeled as:

d(t) = d0 + mb sin(2π fbt) + mh sin(2π fht) (2)

where mb and mh are the displacement amplitudes of respiration and heartbeat, respectively,
and fb and fh are the frequencies of respiration and heartbeat, respectively.

Based on Equation (2), further processing such as denoising and filtering can be
applied to the echo signals to obtain heart rate and respiratory rate. Additionally, the pro-
cessed signal contains motion-related signals, and the energy of motion-related signals
can be obtained by performing a fast Fourier transform (FFT) and then multiplying the
maximum modulus by the frequency range of interest. When the human body is in motion,
the energy of the motion-related signal is usually greater than that when the body is station-
ary. Therefore, if appropriate energy thresholds are set, Nmr-VSM can recognize the user’s
motion status. We set three energy thresholds to recognize four different motion statuses:
stillness, relative stillness, motion, and continuous motion. Finally, the distance R from the
human body to the UWB radar can be calculated using a simple formula R = 1

2 ctD, where
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c represents the speed of light and tD represents the delay in receiving and transmitting
electromagnetic waves.

Data transmission. All vital sign data obtained after preprocessing the echo signal
are uploaded to ECS via WiFi for subsequent correction and application of these data.
ECS is a basic computing component composed of CPU (central processing unit), memory,
operating system, and cloud disk.

3.4. Data Correction

After preprocessing the echo signals, vital sign data of the subject can be obtained.
However, at this point, the detected heart rate and respiratory rate are influenced by
many factors, leaving a lot of room for improvement in detection accuracy. Therefore,
taking the radar heart rate monitoring as an example, we collected real experimental
data and designed a DNN-based data correction model to improve the accuracy of vital
sign detection.

(1) Factors affecting the accuracy of heart rate monitoring: We collected real experimental
data and analyzed several factors that could have a significant impact on heart rate monitor-
ing. The specific experimental settings will be detailed in Section 4, but in summary, we first
recorded the subject’s heart rate simultaneously using a fingertip oximeter and UWB radar
under different experimental conditions. We used the oximeter heart rate as the ground
truth and calculated the absolute error between the radar heart rate and the oximeter
heart rate. Finally, we used Kendall’s tau-b correlation analysis method [25] to analyze
the correlation coefficients between various factors and the absolute error. The higher the
absolute value of the correlation coefficient, the more significant the impact of the factor on
heart rate monitoring is considered. The correlation coefficient heatmap shown in Figure 2
indicates that we analyzed the following factors:

Figure 2. The correlation coefficient heatmap between various factors and the absolute error.

Distance. In this paper, distance refers to the straight line distance between the subject
and the radar, as shown in Figure 3. However, the distance we tested is far more than what
is shown in Figure 3. Since the UWB radar we designed can itself monitor the distance,
the subjects can change the distance arbitrarily during the experiment as long as they are
within the monitoring range of the radar.
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Figure 3. The impact of distance on heart rate detection.

According to Figure 2, the correlation coefficient between distance and absolute error is
−0.102, which means that as the distance increases, the absolute error will decrease, and the
detection accuracy will improve. However, this conclusion only holds true under specific
circumstances, as electromagnetic waves attenuate with distance. When the distance is
far enough, the echo signal received by the radar will be severely distorted, affecting the
monitoring accuracy. In other words, there exists an optimal monitoring distance range for
UWB radar when performing heart rate monitoring, as shown in closed interval (3)

[Lmin, Lmax] (3)

where, Lmin represents the minimum optimal monitoring distance, and Lmax represents the
maximum optimal monitoring distance.

When the real monitoring distance S is less than Lmin, increasing S can reduce the
absolute error and improve the monitoring accuracy. When the real monitoring distance S
is greater than Lmax, increasing S will increase the absolute error and reduce the monitoring
accuracy. When the real monitoring distance S is between Lmin and Lmax, changing S
may either improve or reduce the monitoring accuracy. The values of Lmin and Lmax
are uncertain and are affected by factors such as the environment, the subject’s physical
indicators, and hardware equipment.

Direction and angle. In this paper, direction refers to the orientation of the subject’s
chest relative to the radar, while angle refers to the angle between the line connecting
the radar and the subject and the normal vector of the radar array, as shown in Figure 4.
The directions tested in this study include front, upper-right, upper-left, right-side, left-side,
and back, while the angles tested include 0°, 35°, 45°, 90°, and 180°.

(a) (b)

Figure 4. The impact of direction and angle on heart rate detection. (a) direction; (b) angle.
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As shown in Figure 2, the correlation coefficients between the absolute error and the
angle and direction are 0.112 and 0.187, respectively. This means that as the angle increases,
the absolute error will also increase, leading to a decrease in detection accuracy. The same
trend is observed with direction: as the subject’s orientation changes from front to back,
the detection accuracy decreases. This is due to the fact that the radar’s ability to detect
chest rise and fall varies with different directions and angles. When the subject’s chest is
directly facing the radar array, chest rise and fall is most easily detected. It is worth noting
that, in terms of the correlation coefficients, the detection accuracy is higher when the
direction is to the right than when it is to the left. This is due to physiological differences in
the human body: the chest rise and fall caused by heartbeats is more pronounced on the
left side of the chest.

Subject physical characteristics. In this study, subject physical characteristics include
gender, weight, height, and age. As shown in Figure 2, the correlation coefficients between
these four physical characteristics and the absolute error are all negative. The smallest
correlation coefficient is between weight and absolute error, which is −0.274. Gender and
height have the largest correlation coefficients with the absolute error, both at −0.043. Age
has a moderate correlation with the absolute error, with a coefficient of −0.106. Weight has
a greater impact on detection accuracy because as weight increases, chest fat thickness also
increases, leading to the masking of chest rise and fall caused by heartbeats.

Motion status. The principle of detecting heart rate using UWB radar is to detect chest
rise and fall caused by heartbeats, which are typically very weak, usually only 4–12 mm in
amplitude. On the other hand, body motions caused intentionally or unintentionally by the
subject are usually at a centimeter level or above, much greater than the amplitude of chest
rise and fall, and therefore, subject’s body motion can potentially have a significant impact
on heart rate detection, even completely masking the heartbeat signal, leading to abnormal
results. In this study, experiments were conducted under four motion statuses detected by
UWB radar, including stillness, relative stillness, motion, and continuous motion.

As shown in Figure 2, the correlation coefficient between motion status and absolute
error is 0.219. As expected, motion status has a significant impact on the absolute error, with
greater subject body motion resulting in larger absolute error and lower detection accuracy.

Comprehensive analysis. We evaluated the impact of the above eight factors on heart
rate detection and found that weight has the most significant impact on detection accuracy,
followed by motion status, while gender and height have the weakest impact. From the
bar chart shown in Figure 5, the impact of these factors on detection accuracy decreases
sequentially from left to right.

Figure 5. Comprehensive analysis of the impact of various factors on heart rate detection.

Some factors have a very weak impact on detection accuracy, such as gender and
height, with correlation coefficients of −0.043. However, considering the uncertainty of
the parameters Lmax and Lmin in the optimal detection distance range [Lmin, Lmax] of UWB



Micromachines 2023, 14, 1479 9 of 18

radar, changes in gender and height may affect the parameters, so it is necessary to include
gender and height as inputs to the data correction model.

(2) Data correction based on DNN: To eliminate the impact of the above eight factors
on heart rate detection, we designed a data correction model based on DNN. The input of
this model includes oximeter heart rate, radar heart rate, direction, angle, gender, height,
weight, age, distance and motion status, and the output is the corrected radar heart rate.
The training dataset for the model is derived from the data collected in our experiments,
and we aim to make the corrected radar heart rate as close as possible to the oximeter
heart rate.

As shown in Figure 6, our designed DNN consists of an input layer, three hidden
layers, and an output layer. Specifically, the input layer is responsible for receiving the
input feature data and passing it to the next layer. The input layer’s input dimension is
9, including 64 neurons. Then, the feature data processed by the input layer are directly
transmitted to the first hidden layer, and then passed to the second hidden layer, and so
on. The three hidden layers of the DNN all use PReLU activation functions to enhance the
model’s nonlinear expression ability, making it easier for the model to capture complex
data patterns. Meanwhile, to avoid overfitting, we also apply the Dropout strategy to the
three hidden layers of the model, randomly deactivating a certain proportion of neurons
during model training. The differences among these three hidden layers lie in their neuron
numbers and dropout rates. The first hidden layer contains 128 neurons with a dropout
rate of 0.2; the second hidden layer contains 256 neurons with a dropout rate of 0.3; while
the third hidden layer contains 128 neurons with a dropout rate of 0.4. Finally, there is the
output layer of the DNN, which contains one neuron responsible for predicting the heart
rate correction value.

data correction

input output

hidden L1

hidden L2

hidden L3

64 64 964 64 9

128 128 9128 128 9

256 256 9256 256 9

128 128 9128 128 9

1 1 91 1 9

data correction

input output

hidden L1

hidden L2

hidden L3

64 64 9

128 128 9

256 256 9

128 128 9

1 1 9

Figure 6. The architecture of the data correction model.

To measure the gap between the predicted values of the model and the true values
(i.e., the oximeter heart rate), we use the MSE (mean squared error) as the loss function:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where, ŷi represents the predicted value, yi represents the true value, and n represents the
number of samples.

To more effectively handle sparse matrices, accelerate the training process, and im-
prove the model’s robustness, we employed the Adagrad optimizer. This is an adaptive
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learning rate optimization method that dynamically adjusts the learning rate based on the
gradient history of each parameter during training. Its update formula is as follows:

gt,i = ∇θ J(θi)

Gt,ii = Gt−1,ii + g2
t,i

θt+1,i = θt,i −
η√

Gt,ii + ε
gt,i

(5)

where, gt,i represents the gradient of θi at time t. We use Gt,ii to denote an element in the
i-th row and i-th column of the diagonal matrix Gt, which is the sum of squares on the
historical gradients of θi at time t. ε is a very small value to avoid the denominator being 0.
η is a hyperparameter, representing the global learning rate.

3.5. Anomaly Detection

After being corrected by the DNN model described earlier, we obtain a heart rate
value that is closer to the true heart rate. However, simply presenting the heart rate in
numerical form does not have a significant impact on users’ health monitoring, especially
for non-medical people who have difficulty in extracting useful information from a large
amount of heart rate data. To address this issue, we leveraged the corrected heart rate
data to design a CNN-based HRV analysis model that enables anomaly detection for users.
The details are explained below:

HRV. The time variation between successive heartbeats is defined as HRV, which arises
from modulation of the sinoatrial node by the autonomic nervous system (ANS), leading to
fluctuations or differences in the order of tens of milliseconds in the heartbeat intervals [26].
From an electrocardiogram perspective, HRV refers to the temporal changes that occur
within a continuous sequence of RR intervals, where the RR interval is the time between
two consecutive R waves, as shown in Figure 7. HRV may serve as an indicator of current
diseases or as an early warning sign of impending cardiac conditions [27]. Additionally,
HRV can be applied in emotional analysis [28], sleep staging [29], and other areas.

Figure 7. RR1, RR2, and RR3 represent the intervals between successive R-peaks on the ECG signal,
while HRV refers to the time variation between these adjacent RR intervals.

Dataset. We trained our CNN model on a publicly available dataset [30–32]. Specifi-
cally, the dataset [30] comprises 135 sets of RR interval sequences recorded by an implanted
cardioverter-defibrillator (Medtronic Jewel PlusTM ICD 7218) from 78 patients with spon-
taneous ventricular tachyarrhythmia. When the ICD detects ventricular tachycardia or
ventricular fibrillation in a patient, it applies programmed pacing, cardioversion, or de-
fibrillation therapy. Additionally, the ICD records 1024 consecutive RR intervals before
the occurrence of abnormal events, with the first detection of the abnormal event serving
as the endpoint. On the other hand, the datasets [31,32] consist of RR interval sequences
detected using ECG technology from healthy individuals, and these RR interval sequences
are entirely normal.
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CNN-based anomaly detection. Our designed model achieves a binary classification
task of anomaly detection, with 1024 consecutive RR intervals as input and the output
being “abnormal” or “normal”.

The model consists of three sub-network layers, including two convolutional layers
and one fully connected layer. Specifically, each convolutional layer is composed of a
Conv1d layer, a BatchNorm1d layer for batch normalization, a ReLU activation function,
and an AvgPool1d layer for down-sampling, to extract features from the RR interval
sequence. The fully connected layer includes two hidden layers and an output layer, where
each hidden layer contains a linear fully connected layer and a ReLU activation function.
The first hidden layer also includes a Dropout regularization layer to prevent overfitting.
Finally, a linear layer acts as the classification layer in the fully connected layer to output
the prediction results. The structure of the model is illustrated in Figure 8.

conv L1

conv L2 fully connected

output
input

1

anomaly detection

48

128

Figure 8. The architecture of the anomaly detection model.

To measure the predictive performance of the model, we utilized the cross-entropy
loss function:

L = − 1
N

n

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (6)

where, N represents the number of samples, used to average the loss function of all samples.
yi represents the true label of the i-th sample, which is a binary variable, taking values of
0 or 1, representing that the sample belongs to the negative class or the positive class. ŷi
represents the probability of the i-th sample being predicted as the positive class.

Then, to effectively avoid gradient vanishing or explosion, improve model robustness
and convergence speed, we employed the Adam optimizer, whose update formula is
as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt − α
m̂t√
v̂t + ε

(7)

where, gt represents the gradient at step t. β1 and β2 respectively represent the exponential
decay rates of the first-order moment and the second-order moment. mt and vt respectively
represent the first-order moment estimate and the second-order moment estimate at step
t. m̂t and v̂t respectively represent the bias-corrected first-order moment estimate and the
second-order moment estimate at step t. θt represents the model parameters at step t. α
represents the learning rate. ε is a very small value to avoid dividing by zero.

Model latency value k. Due to each group of data in the abnormal dataset [30] used
to train the model being a sequence of 1024 consecutive RR intervals, the model must
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accumulate 1024 or more consecutive RR intervals before it can perform analysis. In other
words, if there is an RR interval sequence:

X = {x1, x2, x3, . . . , xn−1, xn} (8)

where, X represents n consecutive RR interval sequences, xn represents the n-th RR interval,
and n is greater than or equal to 1024.

Then, when the model analyzes sequence (8), it will first input a subsequence of
sequence (8):

Xsub1 = {x1, x2, . . . , x1023, x1024} (9)

Subsequently, the model will output the analysis result of Xsub1, i.e., whether the RR
interval x1024 is abnormal or not.

And then, the model will input the second subsequence.

Xsub2 = {x2, x3, . . . , x1024, x1025} (10)

And subsequently, the model will output the analysis result of Xsub2, i.e., whether the
RR interval x1025 is abnormal or not.

This process will be repeated for each subsequent subsequence until the final 1024 RR
interval sequence is analyzed.

However, considering that the model needs to comprehensively analyze the 1024 RR
interval sequences, and in some abnormal cases, the changes in the RR intervals may not
be obvious, the model’s detection of anomaly, therefore unavoidably has a certain latency.
From this point on, we can define the latency value k as follows:

Definition 1 (latency value k). Assuming there is an abnormal segment
{

xi, xi+1, . . . , xj−1, xj
}

in the RR interval sequence (8), as shown below:

X =
{

x1, x2, . . . , xi, xi+1, . . . , xj−1, xj, . . . , xn
}

(11)

where, j > i ≥ 1024.
The model should detect this abnormal segment for the first time when it inputs the se-

quence (12) and ouputs the analysis result of it.

Xsub(i+k−1023) = {xi+k−1023, . . . , xi+k−1, xi+k} (12)

where, k is a positive integer known as the latency value k.

In other words, the anomaly detection model can only identify a specific abnormal seg-
ment after a delay of k RR intervals, such as abnormal segment in sequence (11). The delay
value k is represented here by k.

3.6. Demonstration

To visualize the results of vital sign monitoring and anomaly detection, and to enable
users to easily understand the subject’s physical condition, we designed a web page with
front-end and back-end separation. The back-end of this web-page is implemented based
on the Spring Boot framework while the front-end is based on mainstream frameworks
such as jQuery.js and Echarts.js. Additionally, bidirectional communication between the
front-end and back-end is achieved through WebSocket. This webpage is deployed on
ECS, and users can access it via a web browser to view the subject’s vital signs in real-time.
As shown in Figure 9, users can visually observe the subject’s heart rate and respiration
rate on this web-page.
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Figure 9. Demonstration of the Nmr-VSM.

4. Evaluation

In this section, we evaluate the data correction model and the anomaly detection model.

4.1. Data Correction Model

Experimental setup. We collected a total of 10,400 data points through real experi-
ments to train and evaluate the model. The data were obtained from seven subjects, where
each data point included the subject’s direction, angle, distance relative to the UWB radar,
gender, height, weight, age, motion status, heart rate measured by the fingertip oximeter,
and heart rate measured by the UWB radar. During the experiment, we randomly varied
the subject’s direction, angle, distance, and motion status while monitoring their heart rate
using the UWB radar. Additionally, the subjects wore a fingertip oximeter that provided
the true heart rate value, as shown in Figure 10. All the above-mentioned metrics were
used as inputs for the data correction model. Finally, the model outputted the corrected
heart rate value.

(a) (b)

Figure 10. Experimental setup. (a) subject A is undergoing the experiment; (b) subject B is undergoing
the experiment.

Evaluation method. We referred to the heart rate detected by the fingertip oximeter
as the true value, the heart rate detected by the UWB radar as the measured value, and the
heart rate outputted by the model as the corrected value. We used the following metrics to
evaluate the performance of the model:

The first metric is the mean absolute error (MAE):

MAE =
1
n

n

∑
i=1
|yi − ŷi| (13)
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where yi represents the true value, ŷi represents the predicted value, and n represents the
sample size. A smaller MAE indicates better performance of the model.

The second metric is the mean relative error (MRE):

MRE =
1
n

n

∑
i=1

|yi − ŷi|
|yi|

(14)

Similarly, yi represents the true value, ŷi represents the predicted value, and n rep-
resents the sample size. The MRE has a range between 0 and 1, exclusive, with a smaller
value indicating better performance of the model.

The third metric is the mean squared error (MSE), which is shown in Equation (4).
Evaluation results. We randomly selected four subjects out of the seven, and for each

subject, 400 data points were collected for model evaluation. As shown in Figures 11a–d and 12a,
the measured values differ significantly from the true value in most cases, and exhibit
random fluctuations with little relation to the true value. In contrast, the corrected values
tend to approximate the true value well, with a trend that closely follows the true value.
Additionally, as shown in Figure 12b–d, the error of the corrected value is much lower than
that of the measured value. For example, for subject 1, the MAE, MSE and MRE of the
measured value reached 21.48, 484.92, and 0.245 respectively. In comparison, the MAE of
the corrected value was only 2.56, representing an 88.08% reduction. Furthermore, the MSE
and MRE of the corrected value were only 10.30 and 0.029, respectively, indicating a 97.88%
and 89.39% decrease compared to the measured value.

(a) (b)

(c) (d)

Figure 11. Evaluation results of the data correction model. (a–d) represent the true value, corrected
value, and measured value for subjects 1–4, respectively.
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Overall, our designed data correction model achieved good performance and signifi-
cantly reduced the errors. The model can accurately correct the measured value to near the
true value, with a trend that closely matches the true value.

(a) (b)

(c) (d)

Figure 12. Evaluation results of the data correction model. (a) represents the mean true value, mean
measured value, and mean corrected value for subject 1. (b) shows the MAE of the measured value
and corrected value for subject 1. (c) shows the MSE of the measured value and corrected value for
subject 1. (d) shows the MRE of the measured value and corrected value for subject 1.

4.2. Anomaly Detection Model

Experimental setup. Since all seven subjects in this study were completely healthy
and had no heart disease, we randomly selected one subject from the seven and recorded
1600 consecutive RR intervals for this subject, which were all considered normal. Then,
we inserted six abnormal segments randomly into the 1024th to 1600th RR intervals to
simulate heart diseases such as ventricular tachycardia or ventricular fibrillation. These
abnormal segments varied in severity, with some having more pronounced fluctuations
than others. Finally, we used the model to detect the abnormal segments and evaluated the
detection performance.

Evaluation method. We evaluate the model by setting a reasonable maximum latency
value k. Specifically, since for most people, their heart rate is usually higher than 60 BPM,
when the latency value k is equal to 10, the maximum latency time for detecting an abnormal
segment will not exceed 10 s. This is entirely acceptable.Therefore, we consider a successful
detection when the latency value k for detecting an abnormal segment is less than or equal
to 10.
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Evaluation results. The evaluation results are shown in Table 2. All abnormal seg-
ments inserted were successfully detected by the model, and the latency values k for these
six segments were relatively small. The smallest k was only 1, which occurred in an abnor-
mal segment with an average RR interval of 299.5 ms. The largest k was 8, which occurred
in an abnormal segment with an average RR interval of 502.

Table 2. Evaluation results of the anomaly detection model.

Abnormal Segment Average RR Interval (ms) Latency Value k Detection Result

1 350 7 success
2 315 6 success
3 450 7 success
4 350 5 success
5 299.5 1 success
6 502 8 success

Overall, the anomaly detection model we designed can achieve good performance
and successfully detected abnormal situations at a lower latency.

5. Conclusions

In this paper, we propose a novel non-touch vital sign monitoring system Nmr-VSM
based on UWB radar by considering the influence of multiple variables and modeling HRV
of the human body. Firstly, we design a UWB radar that can perform multi-dimensional
vital sign monitoring, including heart rate, respiratory rate, distance, and motion status.
Based on this, we propose a DNN-based heart rate data correction model by analyzing real
experimental data. Then, we model HRV of the human body and design a CNN-based car-
diac anomaly detection model. Finally, we evaluate the performance of Nmr-VSM through
extensive experiments. The results demonstrate that Nmr-VSM can effectively reduce the
error in heart rate monitoring and achieve low-latency detection of cardiac anomalies.

In future work, we will consider correcting the respiration rate measured by radar.
Additionally, we will further consider incorporating more types of data to train the anomaly
detection model, enabling detection of a wider range of heart diseases.Finally, we will also
consider implementing real-time vital sign monitoring for multiple individuals.
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